Интересные новости и комментарии

Автор Дж. Тайсаев, января 15, 2009, 02:31:37

« назад - далее »

ArefievPV

Химеры. Франкенштейны среди нас: Химеры от природы. Человек с двумя ДНК
http://www.popmech.ru/science/12358-khimery-frankenshteyny-sredi-nas-khimery-ot-prirody-chelovek-s-dvumya-dnk/#full
"В лабораториях матери-природы происходят престранные эксперименты: близнецы поглощают один другого прямо в утробе, мать не является матерью собственным детям, а родные братья и сестры сливаются в единый организм, чтобы выжить. Генетики догоняют природу уже сто лет, но превзойти и по сей день не смогли. Итак, перед нами химеризм.
Жительницу США Лидию Фэйрчайлд ожидал неприятный сюрприз, когда после развода она обратилась за социальным пособием. Ее мужу пришлось подтверждать отцовство анализом ДНК — и последний показал, что как раз Лидия не является матерью двоих общих детей (а заодно и третьего, которым она в это время была беременна). Сначала возникло предположение, что причина — пересадка тканей или переливание крови, однако ни женщина, ни дети не подвергались операциям. Штат подал иск о мошенничестве. Положение спас адвокат миссис Фэйрчайлд — он предоставил суду статью из «Медицинского журнала Новой Англии».
52-летней бостонской учительнице Карен Киган требовалась трансплантация почки. Трое ее сыновей согласились быть донорами, однако при генетическом анализе оказалось, что двое из них не родственники собственной матери! Исследования установили массу интересных фактов: в частности, выяснилось, что у Карен была сестра-близнец, которая на ранней фазе эмбрионального развития слилась с выжившим зародышем. Бостонская учительница оказалась химерой — существом, в чьем организме присутствуют, не мешая друг другу, ткани с разными наборами генов.
В прецеденте с миссис Фэйрчайлд все оказалось еще сложнее — ДНК детей Лидии доказывало лишь родство с их бабушкой, матерью миссис Фэйрчайлд. Разобраться удалось лишь благодаря анализу волос, причем волосы на голове и лобке женщины содержали разный генетический материал. Миссис Фэйрчайлд вышла сухой из воды, а ее истории в 2006 году посвятили передачу «Мой близнец во мне».
Официально зафиксировано около сорока случаев химеризма, фактически же их гораздо больше. С высокой вероятностью химерой был знаменитый маньяк Чикатило, у которого не совпадали данные по группе крови и по сперме. Иногда химеризм случайно всплывает при попытках экстракорпорального оплодотворения или искусственной инсеминации: ученые из Германии описали пациентку, у которой в организме 99% клеток содержало женский хромосомный набор XX и 1% - мужской, XY. Как оказалось, ее брат-близнец умер при рождении, но его клетки жили в организме сестры. И это лишь случаи, донесенные до широкой медицинской общественности.
Лапы, крылья и хвост
Термин «химера» взят из греческой мифологии — это «составное» чудовище с телом козы, головой льва, змеиным хвостом и т. д. Порождено оно уродливыми монстрами — полуженщиной-полузмеей Ехидной и великаном Тифоном, убито же, по одной из версий, героем Беллерофонтом. В биологии химера, как уже говорилось, — существо с разнородным генетическим материалом, сосуществующим в одном организме. Первым термин ввел в 1907 году немецкий ботаник Ганс Винклер, назвав химерами растения, полученные в результате прививки паслена на черенок томата. Объяснил природу явления другой ботаник — Эрвин Баур. А первое «сложносочиненное» животное было сконструировано в 1984 году — искусственная «мозаика» овцы и козы, детеныш четырех родителей, часть клеток которого содержала овечий геном, а часть — козий.
Химеризм у растений — результат природных мутаций или прививок, когда ветка растения одного вида подсаживается к стволу другого. Эксперименты Лютера Бёрбанка со знаменитым Russet Burbank, сортом картофеля, который сейчас составляет до 50% урожая картофеля в Соединенных Штатах Америки, бескосточковыми сливами и айвой с запахом ананаса в большинстве своем были созданием франкенштейнов в мире растений. Тем же занимался знаменитый Мичурин, который со всей обстоятельностью изучал, как влияет подвой (молодое растение, на которое подсаживают чужой черенок) на урожайность, жизнеспособность и другие свойства привоя. Реакция «трансплантат против хозяина», из-за которой столь опасны пересадки органов у людей и животных, растениям, в общем, несвойственна. Единственная сложность — зеленые химеры, как правило, не передают свои качества по наследству, размножать их приходится вегетативным путем.
Химеризм у млекопитающих может быть следствием нескольких процессов, как естественных, так и искусственных.
Первый — так называемый тетрагаметический химеризм, когда воедино сливаются две яйцеклетки, каждая из которых оплодотворена своим сперматозоидом, или два эмбриона на ранних стадиях развития, вследствие чего разные органы или клетки такого организма содержат разный хромосомный набор. Истории с «поглощенным близнецом» — типичный пример такого химеризма.
Второй — микрохимеризм. Клетки младенца могут проникать в кровеносную систему матери и приживаться в ее тканях (фетальный микрохимеризм). Например, иммунные клетки плода могут (во всяком случае на несколько лет) вылечить мать от ревматоидного артрита, помочь восстановить сердечную мышцу после развившейся во время беременности сердечной недостаточности или повысить сопротивляемость материнского организма онкологическим заболеваниям. И наоборот, клетки матери проникают через плацентарный барьер к плоду (материнский микрохимеризм). Не без его помощи формируется система врожденного иммунитета: иммунная система плода «натаскивается» на сопротивление болезням, иммунитет к которым выработался у матери. Оборотная сторона этой медали — то, что ребенок еще в утробе матери может стать жертвой ее собственных заболеваний. В частности, такое аутоиммунное заболевание, как волчанка новорожденных, часто встречается у детей, матери которых болеют системной красной волчанкой.
Третий вариант природного химеризма — «близнецовый», когда из-за сращения кровеносных сосудов гетерозиготные близнецы передают друг другу свои клетки (не с одинаковыми, как у гомозиготных, а с так же, как у родных братьев и сестер, различающимися наборами генов). Так стала химерой упомянутая выше пациентка из Германии.
Следующий вариант химеризма — посттрансплантационный, когда после переливания крови или пересадки органа в организме человека собственные клетки сосуществуют с клетками донора. Очень редко, но случается, что клетки донора полностью «встраиваются» в организм реципиента — так, несколько лет назад у одной австралийской девочки после пересадки печени навсегда изменилась группа крови.
Последний вариант — трансплантация костного мозга, при которой врачи прилагают все усилия, чтобы сделать из пациента химеру и заставить пересаженные клетки работать вместо хозяйских. Собственный костный мозг больного убивают облучением и специальными препаратами, вводят на его место донорские кроветворные клетки и ждут. Если анализы выявляют донорский химеризм — все счастливы, процесс идет, а если удастся справиться с отторжением трансплантата, есть шансы на выздоровление. А вот возвращение «родных» клеток означает скорый рецидив болезни.
Доктора и гомункулы
Ученым понадобилось около двадцати лет (с момента первой успешной операции доктора Томаса), чтобы научиться подбирать доноров и реципиентов, совместимых по лейкоцитарным антигенам человека — белкам, несовпадение которых запускает каскад молекулярных реакций, приводящих к отторжению трансплантата, и бороться с отторжением с помощью препаратов, подавляющих иммунитет. К 1990 году было проведено около 4000 пересадок костного мозга — меньше, чем в наши дни проводится за год. Сейчас пятилетняя выживаемость (фактически — выздоровление) при остром лейкозе составляет 65%. Соответственно, появилась возможность наблюдать за неожиданными эффектами химеризма.
К тому, что после пересадки могут измениться группа крови, резус-фактор и структура волос, уже давно готовы и врачи, и родственники больных — но это отнюдь не все.
То, что пересадка костного мозга может излечить даже СПИД, — случайное открытие, везение немецких медиков. Известно, что около 1% европейцев устойчивы к ВИЧ. Некий 42-летний американец, страдающий и лимфомой, и СПИДом, прошел трансплантацию костного мозга, чтобы избавиться от одной из своих болезней. И неожиданно для всех (включая врачей) исцелился от обеих — его донор оказался носителем мутации, обеспечивающей устойчивость к вирусу, и передал ее реципиенту вместе с костным мозгом.
Ноу-хау XXI века — разработки по внутриутробной клеточной терапии. Стволовые клетки крови вводятся плоду, страдающему иммунодефицитом, талассемией, гранулоцитозом — и теоретически ребенок должен родиться здоровым. Практически удалось добиться эффекта лишь у плодов с иммунодефицитом, во всех остальных случаях даже при минимальном химеризме болезнь не отступала. На животных активно проводятся опыты по комплексной терапии: сперва «выключают» иммунитет плода, а затем проводят пересадку. Но до экспериментов на людях пока далеко.
Лабораторные химеры
История химерных зародышей началась с бычков доктора Рэя Оуэна и цыплят доктора Питера Брайана Медавара, благодаря которым удалось разработать механизм химеризации.
Телята и цыплята
Оуэн первым обратил внимание, что у телят-близнецов в организме прекрасно сосуществуют клетки с разнородным генетическим материалом, и причина тому - сращение кровеносных сосудов. А доктор Медавар сперва сращивал выпиленными в скорлупе «окошками» куриные яйца, затем ставил эксперименты по введению культур клеток уток в куриные зародыши, затем начал соединять кровеносные системы зародышей цыплят и, наконец, сформулировал термин «иммунологическая толерантность» — готовность организма принять чужие клетки. Он первым подсадил зародышам мышат одной чистой линии клетки зародышей другой, а затем пересаживал выжившим химерам лоскуты кожи, чтобы продемонстрировать: пересаженные биоматериалы сохраняют свойства родного организма и при этом не отторгаются. Ученые Чикаго и Ливерпуля сконструировали в лабораториях химеры лесных и домашних мышей, введя дополнительный генетический материал в зародыши на стадии бластоцисты. Мышата оказались вполне жизнеспособными: более активными, чем домашние мыши, но менее активными, чем лесные. В России успешно выращивали куриных химер — белых леггорнов с рыжими хвостами родайлендов.
Игрушечные человечки
Еще один вариант создания химер — введение человеческой ДНК в яйцеклетку животного. Генетический материал цибридов — клеточных гибридов — практически полностью является человеческим, от животного они получают только митохондриальную ДНК. Правда, попытки довести гибридные эмбрионы до рождения химер на современном уровне науки обречены на провал; к тому же клонирование человека и тем более создание человеко-животных химер законодательно запрещены во всех развитых странах. Да и нет никакого смысла в таких сложных экспериментах. Несколько десятков цибридных эмбрионов, созданных с чисто исследовательскими целями, были уничтожены через несколько дней после начала деления яйцеклетки.
В ботанике различают следующие типы химер:
Мозаичные (гиперхимеры): генетически разные ткани образуют тонкую мозаику.
Секториальные: разнородные ткани расположены крупными участками.
Периклинальные: ткани лежат слоями друг над другом.
Мериклинальные: ткани состоят из смеси секториальных и периклинальных участков.
Химеризм во благо
Медицина поставила возможности химеризма себе на службу еще до того, как это явление было изучено во всей полноте. В 1940 году была проведена первая попытка трансплантации больному пластической анемией костного мозга его брата. В 1958 году пересадкой костного мозга в Париже лечили шестерых югославских физиков, пострадавших при аварии на АЭС, пятеро из них выжили. В 1957 году в США доктору Эдуарду Томасу удалось (после тотального облучения тела) добиться приживления трансплантата у двоих детей, больных лейкозом. Дети вскоре погибли, а через 10 лет из 417 проведенных Томасом трансплантаций успешными оказались только три. В 1968 году была осуществлена полностью успешная трансплантация: ребенку с тяжелым иммунодефицитом ввели костный мозг его брата. Больной выздоровел, став химерой — вместо собственных клеток кровь в организме вырабатывали «братские». А Эдуард Томас в 1990 году получил Нобелевскую премию по медицине."

Дж. Тайсаев

Цитата: ArefievPV от июля 05, 2015, 17:24:40Бостонская учительница оказалась химерой — существом, в чьем организме присутствуют, не мешая друг другу, ткани с разными наборами генов.
Любопытно, а как там решается проблема с иммунной совместимостью? Ведь это теоретически может решить основную проблему транспланталогии.
Шматина глины не знатней орангутанга (Алексей Толстой).

Preguntador

(уже размещал тут эту ссылку, но тогда это осталось незамеченным, так что не помешает)

До кучи:
http://elementy.ru/problems/958

ArefievPV

Цитата: Дж. Тайсаев от июля 05, 2015, 21:40:42
Цитата: ArefievPV от июля 05, 2015, 17:24:40Бостонская учительница оказалась химерой — существом, в чьем организме присутствуют, не мешая друг другу, ткани с разными наборами генов.
Любопытно, а как там решается проблема с иммунной совместимостью? Ведь это теоретически может решить основную проблему транспланталогии.
В этом случае возможно химера и может существовать только потому, что ткани иммунологически совместимы изначально. Ткани-то получается "принадлежат" близким родственникам. До некоторой степени процесс случайный. Примерно как трансплантологи подбирают доноров. Ну а здесь так совпало. Близкий родственник чаще подходит в качестве донора, полагаю.
А если бы ткани развивающейся химеры были не совместимы изначально, то и зародыш ещё в утробе матери распался. Такие случаи (выкидыш, смерть плода в утробе, рассасывание плода и т.д.) полагаю, не особо проверяли на химеризм тканей. Было бы интересно такую статистику посмотреть.

ArefievPV

Цитата: Preguntador от июля 05, 2015, 22:00:13
(уже размещал тут эту ссылку, но тогда это осталось незамеченным, так что не помешает)
До кучи:http://elementy.ru/problems/958
Интересно и очень в тему. Химеризм оказывается существует в реальности. Люди-то с глазами (радужкой) разного цвета встречаются. Пройдёшь мимо человека и ничего особенного не углядишь. А он натуральной химерой может оказаться. :-[ Потому как в сознании людей почему-то укоренился облик химеры из мифов и сказок - некоего чудища с органами от разных животных (всяких там кентавров, грифонов, русалок и пр.).

ArefievPV

Переход от хромосомного определения пола к температурному может произойти за одно поколение
http://elementy.ru/news/432524/Perekhod_ot_khromosomnogo_opredeleniya_pola_k_temperaturnomu_mozhet_proizoyti_za_odno_pokolenie
"У бородатых агам Pogona vitticeps пол определяется половыми хромосомами (у самцов хромосомы ZZ, у самок ZW), однако в лабораторных экспериментах было показано, что при повышенной температуре мужские эмбрионы меняют пол и становятся самками. Как выяснилось, в последние годы это происходит не только в лаборатории, но и в природных популяциях агам. Возможно, это связано с изменением климата. Рост числа плодовитых самок с мужским хромосомным набором (ZZ) создает предпосылки для полного исчезновения женской половой хромосомы W. В результате вид может перейти от преимущественно хромосомного определения пола к чисто температурному. Переход может произойти за счет генетико-автоматических процессов независимо от того, какой из двух способов определения пола выгоднее ящерицам.
Раздельнополость предполагает наличие у организма двух альтернативных, генетически обусловленных путей развития: мужского и женского. В ходе развития эмбриона одна из программ реализуется, а другая остается спящей. С универсальностью этого общего принципа контрастирует разнообразие механизмов выбора, то есть тех «переключателей», которые направляют развитие либо по женскому пути, либо по мужскому (см.: Определение пола). Эти переключатели делятся на две основные группы: генетические и средовые. При генетическом определении пола уже на стадии оплодотворенного яйца можно сказать наверняка (ну, почти наверняка), какого пола будет организм. Наиболее распространенным случаем является хромосомное определение пола, помогающее без лишних ухищрений поддерживать соотношение полов, близкое к эволюционно стабильному уровню 1:1. При средовом определении пола в генах «записан» не сам пол, а алгоритм его выбора в зависимости от условий среды, таких как температура, длина светового дня, плотность популяции или присутствие тех или иных веществ (см.: Environmental sex determination).
...
В популяции, где есть два типа самок — ZZ и ZW — наличие «женской» хромосомы W является, по сути дела, наследственным фактором, повышающим вероятность рождения дочери. При любой температуре как минимум половина потомков самок ZW будут женского пола, потому что получат от матери хромосому W. Из оставшейся половины часть может стать самками из-за высокой температуры. У самок ZZ, как мы знаем, при низкой температуре рождаются только сыновья, при высокой — сыновья и дочери, при очень высокой — только дочери. Таким образом, при определенных параметрах температурной чувствительности и при определенном температурном режиме может сложиться ситуация, когда в популяции преобладают самки, а значит, выгодно рожать побольше сыновей, но при этом наличие хромосомы W снижает вероятность родить сына. В результате за счет фишеровского механизма хромосома Z получит селективное преимущество над хромосомой W и вытеснит ее из генофонда, а вместе с ней исчезнет и хромосомное определение пола.
...
Авторы рассчитали, что при реально наблюдаемых параметрах системы (даже без учета повышенной плодовитости самок ZZ) утрата хромосомы W под действием фишеровского механизма неизбежно произойдет, если в ареале бородатых агам будет сохраняться постоянная температура 33,5° или выше. Конечно, температура в действительности никогда не остается постоянной, а учесть все ее колебания, тем более предсказать их, невозможно. Тем не менее полученные данные и результаты моделирования показывают, что природные популяции бородатой агамы сейчас находятся в неустойчивом переходном состоянии. Даже небольшое повышение среднегодовых температур может привести к необратимой утрате хромосомы W и переходу к чисто температурной регуляции пола.

Это, в свою очередь, может повысить вероятность вымирания вида. Резкие колебания климата, при прочих равных, угрожают существованию видов с температурным определением пола в большей степени, чем видов с хромосомным определением пола. В первом случае резкое потепление или похолодание может привести к тому, что на свет будут появляться особи только одного пола. На этом даже основана одна из гипотез о вымирании динозавров: кто знает, может быть, у них было температурное определение пола, а климат резко изменился, вот они и вымерли. На самом деле в такой ситуации всё будет зависеть от того, насколько эволюционно пластичной является зависимость пола от температуры. Если в популяции есть наследственная изменчивость по температурной чувствительности (а у бородатых агам она, судя по всему, есть), то популяция может успеть адаптироваться к новому температурному режиму."

Lion

Цитата: ArefievPV от июля 06, 2015, 05:50:56
Даже небольшое повышение среднегодовых температур может привести к необратимой утрате хромосомы W и переходу к чисто температурной регуляции пола.

Если бы это было вероятным, то давно бы произошло.

Tiktaalik

Комету Чурюмова-Герасименко назвали обиталищем инопланетной жизни

На комете 67Р (Чурюмова-Герасименко) могут в изобилии присутствовать микробы инопланетного происхождения, утверждают британские астрономы. Именно присутствие живых организмов подо льдом позволяет объяснить характерные особенности кометы — например, богатую органическими соединениями черную кору. Однако ни орбитальный аппарат Rosetta, ни зонд Philae не были оборудованы приборами, позволяющими искать следы жизни. Свою гипотезу ученые представят на конференции Королевского астрономического общества, которая пройдет 6 июля в Лландидно, а коротко о ней сообщает The Independent.

Макс Уоллис (Max Wallis) из Кардиффского университета и Чандра Викрамасингх (Chandra Wickramasinghe), директор Бэкингемского центра астробиологии, утверждают, что среда кометы благоприятна для жизни даже больше, чем полярные районы Земли. Только присутствие микроорганизмов объясняет такие аномальные явления на поверхности кометы, как темная кора, лед, кратеры с плоским дном и изобилие гигантских валунов.

Все эти свойства говорят о том, что на комете существует среда из смеси льда и органики, которую подогревают лучи Солнца, и именно там могут жить микроорганизмы.

Астрономы построили модель процессов, идущих на поверхности кометы. Согласно этой модели, живым существам для колонизации небесного тела требуется жидкая вода, а скрываться они могут в трещинах льда. Эти организмы обязательно должны содержать антифризные соли, позволяющие выживать при температуре минус 40 градусов по Цельсию. Именно до нее часть поверхности кометы сейчас нагревает Солнце.

Кроме того, из многих трещин во льду на поверхность кометы вырываются газопылевые струи. «По моему мнению, виновата в этом деятельность микробов, живущих подо льдом — из-за нее давление газа становится таким сильным, что слои льда не выдерживают и дают трещины», — заявил профессор Викрамасингх.

Наконец, о возможном наличии жизни на комете Чурюмова-Герасименко говорит изобилие органических молекул на ее поверхности, организованных более сложным образом, чем простые углеводороды (вроде метана). Молекулы разглядели на снимках, сделанных инфракрасной камерой аппарата Rosetta.

Миссия Rosetta координируется ЕКА при участии его членов-государств, а также НАСА. Данные, полученные с ее помощью, необходимы для объяснения процессов эволюции Солнечной системы и появления воды на Земле. Миссия включает орбитальный аппарат и спускаемый зонд. Посадку на поверхность кометы 67P (Чурюмова-Герасименко) зонд Philae совершил 12 ноября 2014 года. Это была первая мягкая посадка тела с Земли на ядро кометы.

Пик исследований придется на 13 августа 2015 года, когда комета приблизится к Солнцу на минимальное расстояние, а истечение вещества с ее поверхности будет происходить с максимальной скоростью. 23 июня 2015 года ЕКА анонсировало продление миссии Rosetta до сентября 2016 года. Планируется, что орбитальный корабль спустится на поверхность кометы Чурюмова-Герасименко.

http://lenta.ru/news/2015/07/06/cometlife/

Preguntador

Цитата: ArefievPV от июля 04, 2015, 03:41:51
Недавно (#694) размещал эту новость. А вот сейчас на "Элементах" появилась статья о том же.
Одноклеточные водоросли построили сложный глаз из хлоропластов и митохондрий
http://elementy.ru/news/432523
"Сделать камерный глаз, обладающий роговицей, радужной оболочкой, линзой и сетчаткой, можно и из компонентов единственной клетки. Для этого представители динофлагеллят семейства Warnowiidae используют сложным образом объединенные органеллы — митохондрии, эндоплазматическую сеть и бывшие хлоропласты, потерявшие способность фотосинтезировать.
...
Получается интересный и достаточно редкий пример конвергенции на двух уровнях жизни — одноклеточном и многоклеточном. Интересно, что в создании сложного глаза микроорганизма задействованы и оба типа эндосимбионтов (хлоропласты и митохондрии), и его собственные мембраны (эндоплазматическая сеть).
...
Еще один заметный признак динофлагеллят — это постоянно конденсированные хромосомы, поляризующие свет. Позволяет ли сложный глаз Warnowiidae различать поляризованный свет, еще предстоит проверить. Но внутреннее устройство их «сетчатки» с сотнями параллельно ориентированных мембранных пузырьков действительно сходно с поляризаторами, которые используются, к примеру, в солнечных очках и линзах фотоаппаратов."
Туда же:
http://geektimes.ru/post/252976/

ArefievPV

Самый большой крокодил
http://www.popmech.ru/biology/178491-samyy-bolshoy-krokodil/
"Гребнистый или морской крокодил (Crocodylus porosus) по имени Кассиус считается самым крупным из ныне живущих представителем отряда.
Кассиус был признан крупнейшим крокодилом в неволе в 2013 году (5,48 м). Весит рекордсмен около тонны (998 кг). Его поймали в 2011 году в Австралии. В настоящий момент животному около 100 лет. Его полное имя — Кассиус Клей. Он был назван в честь известного боксера Мохаммеда Али (урожденный Кассиус Марселлус Клей).
Титул самого большого крокодила Кассиус получил после гибели предыдущего рекордсмена — крокодила Лолонга, который достигал в длину 6,17 метров. Лолонг также относился к виду Crocodylus porosus. Его представители могут жить более 100 лет, вырастать до 7 метров и весить более тонны.
Самым большим среди когда-либо живущих крокодилов считают вид Sarcosuchus imperator. Особи этого вида проживали на территории Африки 110 лет назад. Последние окаменелые останки были найдены в пустыне Сахара. Ученые предполагают, что за 50−60 лет крокодилам удавалось вырасти до 11−12 метров в длину и набрать до 8 тонн веса."

Set O. Lopata

Цитата: ArefievPV от июля 07, 2015, 18:58:24
проживали на территории Африки 110 лет назад.
Ну-ну. А 109 лет назад уже не жили. Журналисты даже из Википедии переписать не могут по-человечески.

Жан-Люк Пикар

Цитата: ArefievPV от июля 07, 2015, 18:58:24
Самым большим среди когда-либо живущих крокодилов считают вид Sarcosuchus imperator. Особи этого вида проживали на территории Африки 110 лет назад.
Журналисты украли миллионы лет эволюции! ???

ArefievPV

Цитата: Жан-Люк Пикар от июля 07, 2015, 22:42:40
Цитата: ArefievPV от июля 07, 2015, 18:58:24
Самым большим среди когда-либо живущих крокодилов считают вид Sarcosuchus imperator. Особи этого вида проживали на территории Африки 110 лет назад.
Журналисты украли миллионы лет эволюции! ???
Журналисты - это страшные люди. :) Однако, с себя вины не снимаю. :-[ Надо было сразу комментом сопроводить...
Вот здесь неплохая подборка (с картинками) про крокодиломорфов.
http://haritonoff.livejournal.com/150303.html
Там первенство отдано другому "товарищу"...
"...однако в миоцене, 8 млн лет назад, в бассейне Амазонки существовал гигантский кайман Purussaurus brasiliensis 13,5 м длиной и 10 тонн весом. По совокупности роста и веса он и будет у нас самой большой крокодилой всех времен и народов."

ArefievPV

10 удивительных способов обмануть хищника
http://www.popmech.ru/biology/179161-10-udivitelnykh-sposobov-obmanut-khishchnika/#full
"Мир дикой природы жесток и полон злобных хищников, готовых полакомиться маленькими беззащитными созданиями. Чтобы избежать участи чужого обеда, некоторые животные вступают в драку, другие — убегают. А самые хитрые предпочитают искусство обмана"

Подборка не слишком известных фактов о животных...

ArefievPV

Панды минимизируют энергетические затраты, чтобы обходиться бамбуковой диетой
http://elementy.ru/news/432526/Pandy_minimiziruyut_energeticheskie_zatraty_chtoby_obkhoditsya_bambukovoy_dietoy
"Китайские ученые выяснили, как пандам удается обходиться скромным рационом, состоящим почти исключительно из побегов бамбука. Оказалось, что панды расходуют значительно меньше энергии, чем другие наземные животные, благодаря замедленному обмену веществ. Низкой скоростью обмена панды обязаны поломке гена DUOX2, участвующего в синтезе гормонов щитовидной железы. Кроме этого, панды двигаются меньше и медленнее, чем другие медведи, а их мозг, печень и почки меньше по сравнению с органами других плацентарных животных."