Общие закономерности в природе

Автор ArefievPV, октября 05, 2015, 05:39:31

« назад - далее »

ArefievPV

Цитата: ArefievPV от ноября 27, 2016, 14:21:54
Получается, что чем больше отражений объекта (в разных «зеркалах»), тем более объективное отражение можно сформировать из этих разрозненных отражений.
То есть, реальный объект, отражённый в бесконечном количестве «зеркал», отражения в которых и представляют собой в совокупности единое объективное отражение объекта. Однако это, по сути, отразится сразу во всей вселенной (в каждой её структуре, в каждом её объекте и т.д.). Но ведь сформированное из этого бесконечного количества отражений вселенной и есть сам объект!

Тут даже можно сформулировать вообще фантастическое определение-предположение.
Приведу его, пожалуй, в другой теме.

Теперь само фантастическое определение (и предположение одновременно).
Реальный объект – это совокупность отражений, сформированная из всех отражений (объектов/структур доступной вселенной) некоей сущности «находящейся» «вне» этой вселенной. То есть, для данного объекта все остальные объекты/структуры вселенной это «зеркала». И так для каждого реального объекта.

Для пояснения приведу двумерную аналогию.
Типа, реальный объект (некая сущность в трёхмерном пространстве), как «изображение», формируется в виде проекции из трёхмерного объёма шара, проецируемой на внутреннюю поверхность сферы. Эта сущность проецируется сразу на всю внутреннюю поверхность сферы, буквально на все структуры. Но совокупность всех проекций для нас представляет только реальный объект (в нашем мире), в реальном объекте и «сходятся» все «изображения». Внутренняя поверхность и есть наш реальный мир.

Интересно, что к подобному взгляду пришли и другие. Разумеется, посредством собственных умозаключений (и более строго, наверное, а не с помощью досужего «философствования» (как у меня)).
Голографическая вселенная.
http://sci-dig.ru/statyi/chto-takoe-golograficheskaya-vselennaya/

ArefievPV

За пределами таблицы Менделеева: зачем ищут трансурановые элементы
http://www.popmech.ru/science/289032-za-predelami-tablitsy-mendeleeva-zachem-ishchut-transuranovye-elementy/

В поисках новых химических элементов ученые давно оставили привычный «материк» школьной Периодической таблицы, прошли радиоактивным полуостровом, пересекли пролив крайне неустойчивых ядер и оказались на долгожданных берегах «острова Стабильности».

Химический материк

Полтора века назад, когда Дмитрий Иванович Менделеев открыл Периодический закон, было известно только 63 элемента. Упорядоченные в таблицу, они легко раскладывались по периодам, каждый из которых открывается активными щелочными металлами и заканчивается (как выяснилось позже) инертными благородными газами. С тех пор таблица Менделеева увеличилась почти вдвое, и с каждым расширением Периодический закон подтверждался снова и снова. Рубидий так же напоминает калий и натрий, как ксенон — криптон и аргон, ниже углерода располагается во многом похожий на него кремний... Сегодня известно, что эти свойства определяются числом электронов, вращающихся вокруг атомного ядра.


Они заполняют «энергетические оболочки» атома одну за другой, как зрители, по порядку занимающие сиденья на своих рядах в театре: тот, кто оказался последним, определит химические свойства всего элемента. Атом с полностью заполненной последней оболочкой (как гелий с его двумя электронами) будет инертным; элемент с одним «лишним» электроном на ней (как натрий) станет активно образовывать химические связи. Число отрицательно заряженных электронов на орбитах связано с количеством положительных протонов в ядре атома, и именно числом протонов отличаются разные элементы.

Зато нейтронов в ядре одного и того же элемента может быть разное количество, заряда у них нет, и на химические свойства они не влияют. Но в зависимости от числа нейтронов водород может оказаться тяжелее гелия, а масса лития — достигать семи вместо «классических» шести атомных единиц. И если список известных элементов сегодня приближается к отметке в 120, то число ядер (нуклидов) перевалило за 3000. Большинство из них нестабильны и спустя некоторое время распадаются, выбрасывая «лишние» частицы в ходе радиоактивного распада. Еще больше нуклидов неспособны существовать в принципе, моментально разваливаясь на куски. Так материк стабильных ядер окружает целое море неустойчивых сочетаний нейтронов и протонов.

Море Неустойчивости

Судьба ядра зависит от числа нейтронов и протонов в нем. Согласно оболочечной теории строения ядра, выдвинутой еще в 1950-х, частицы в нем распределяются по своим энергетическим уровням так же, как электроны, которые вращаются вокруг ядра. Некоторые количества протонов и нейтронов дают особо устойчивые конфигурации с полностью заполненными протонными или нейтронными оболочками — по 2, 8, 20, 28, 50, 82, а для нейтронов еще и 126 частиц. Эти числа называются «магическими», а самые стабильные ядра содержат «дважды магические» количества частиц — например, 82 протона и 126 нейтронов у свинца или по два — в обычном атоме гелия, второго по распространенности элемента во Вселенной.

Последовательный «Химический материк» элементов, которые можно найти на Земле, заканчивается свинцом. За ним следует череда ядер, которые существуют намного меньше возраста нашей планеты. В ее недрах они могут сохраниться разве что в малых количествах, как уран и торий, или вовсе — в следовых, как плутоний. Из породы извлечь его невозможно, и плутоний нарабатывают искусственно, в реакторах, бомбардируя нейтронами урановую мишень. Вообще современные физики обращаются с ядрами атомов, как с деталями конструктора, заставляя их присоединять отдельные нейтроны, протоны или целые ядра. Это и позволяет получать все более и более тяжелые нуклиды, пересекая пролив «моря Неустойчивости».

Цель путешествия подсказана той же оболочечной теорией строения ядра. Это — область сверхтяжелых элементов с подходящим (и очень большим) числом нейтронов и протонов, легендарный «остров Стабильности». Расчеты говорят, что некоторые из местных «жителей» могут существовать уже не доли микросекунд, а на много порядков дольше. «В определенном приближении их можно рассматривать как капельки воды, — объяснил нам академик РАН Юрий Оганесян. — Вплоть до свинца следуют ядра сферические и устойчивые. За ними следует полуостров умеренно стабильных ядер — таких как торий или уран, — который вытягивается отмелью сильно деформированных ядер и обрывается в нестабильное море... Но еще дальше, за проливом, может находиться новая область сферических ядер, сверхтяжелых и устойчивых элементов с номерами 114, 116 и далее». Время жизни некоторых элементов на «острове Стабильности» может длиться уже годы, и то и миллионы лет.



Остров Стабильности

Трансурановые элементы с их деформированными ядрами удается создать, бомбардируя нейтронами мишени из урана, тория или плутония. Обстреливая их разогнанными в ускорителе легкими ионами, можно последовательно получить ряд элементов еще тяжелее — но в какой-то момент наступит предел. «Если рассматривать разные реакции — присоединение нейтронов, присоединение ионов — как разные «корабли», то все они не помогут нам доплыть до «острова Стабильности», — продолжает Юрий Оганесян. — Для этого потребуется «судно» и побольше, и другой конструкции. В качестве мишени придется использовать нейтроноизбыточные тяжелые ядра искусственных элементов тяжелее урана, а бомбардировать их потребуется большими, тяжелыми изотопами, содержащими много нейтронов, такими как кальций-48».

Работа над таким «кораблем» оказалась по силам лишь большой международной команде ученых. Инженеры и физики комбината «Электрохимприбор» выделили из природного кальция исключительно редкий 48-й изотоп, содержащийся здесь в количестве менее 0,2%. Мишени из урана, плутония, америция, кюрия, калифорния приготовили в Димитроградском НИИ Атомных реакторов, в Ливерморской национальной лаборатории и в Национальной лаборатории в Оук-Ридже в США. Ну а ключевые эксперименты по синтезу новых элементов были проведены академиком Оганесяном в Объединенном институте ядерной физики (ОИЯИ), в Лаборатории ядерных реакций имени Флёрова. «Наш ускоритель в Дубне работал по 6−7 тысяч часов в год, разгоняя ионы кальция-48 примерно до 0,1 скорости света, — объясняет ученый. — Эта энергия необходима, чтобы некоторые из них, ударяясь в мишень, преодолели силы кулоновского отталкивания и слились с ядрами ее атомов. Например, 92-й элемент, уран, даст ядро нового элемента с номером 112, плутоний — 114, а калифорний — 118».

«Такие ядра должны быть уже достаточно стабильны и распадаться будут не сразу, а станут последовательно выбрасывать альфа-частицы, ядра гелия. А уж их мы прекрасно умеем регистрировать», — продолжает Оганесян. Сверхтяжелое ядро выбросит альфа-частицу, превратившись в элемент на два атомных номера легче. В свой черед и дочернее ядро потеряет альфа-частицу и превратится во «внучатое» — еще на четыре легче, и так далее, пока процесс последовательного альфа-распада не закончится случайным появлением и моментальным спонтанным делением, гибелью неустойчивого ядра в «море Нестабильности». По этой «генеалогии» альфа-частиц Оганесян и его коллеги проследили всю историю превращения полученных в ускорителе нуклидов и очертили ближний берег «острова Стабильности». После полувекового плавания на него высадились первые люди.

Новая земля

Уже за первое десятилетие XXI века в реакциях слияния актинидов с ускоренными ионами кальция-48 были синтезированы атомы элементов с номерами от 113 и вплоть до 118-го, лежащего на дальнем от «материка» берегу «острова Стабильности». Время их существования уже на порядки больше, чем у соседей: например, элемент 114 сохраняется не миллисекунды, как 110-й, а десятки и даже сотни секунд. «Такие вещества уже доступны для химии, — говорит академик Оганесян. — А значит, мы возвращаемся к самому началу путешествия и теперь можем проверить, соблюдается ли для них Периодический закон Менделеева. Будет ли 112-й элемент аналогом ртути и кадмия, а 114-й — аналогом олова и свинца»? Первые же химические эксперименты с изотопом 112-го элемента (коперниция) показали: видимо, будут.

Ядра коперниция, вылетающие из мишени при бомбардировке, ученые направляли в длинную трубку, включающую 36 парных детекторов, частично покрытых золотом. Ртуть легко образует устойчивые интерметаллические соединения с золотом (это свойство используется в древней технике позолоты). Поэтому ртуть и близкие к ней атомы должны оседать на золотой поверхности первых же детекторов, а радон и атомы, близкие к благородным газам, могут добираться до конца трубки. Послушно следуя Периодическому закону, коперниций проявил себя родственником ртути. Но если ртуть стала первым известным жидким металлом, то коперниций, возможно, окажется первым газообразным: температура его кипения ниже комнатной. По словам Юрия Оганесяна, это только блеклое начало, и сверхтяжелые элементы с «острова Стабильности» откроют нам новую, яркую и необычную область химии.

Но пока мы задержались у подножия острова стабильных элементов. Ожидается, что 120-й и следующие за ним ядра могут оказаться по-настоящему устойчивыми и будут существовать уже долгие годы, а то и миллионы лет, образуя стабильные соединения. Однако получить их с помощью того же кальция-48 уже невозможно: не существует достаточно долгоживущих элементов, которые могли бы, соединившись с этими ионами, дать ядра нужной массы. Попытки заменить ионы кальция-48 чем-нибудь более тяжелым пока тоже не принесли результата. Поэтому для новых поисков ученые-мореплаватели подняли голову и присмотрелись к небесам.

Космос и фабрика

Первоначальный состав нашего мира разнообразием не отличался: в Большом взрыве появился лишь водород с небольшими примесями гелия — легчайшие из атомов. Все прочие уважаемые участники таблицы Менделеева появились в реакциях слияния ядер, в недрах звезд и при взрывах сверхновых. Неустойчивые нуклиды быстро распадались, устойчивые, как кислород-16 или железо-54, накапливались. Неудивительно, что тяжелых нестабильных элементов, таких как америций или коперниций, в природе обнаружить не удается.

Но если где-то в самом деле есть «остров Стабильности», то хотя бы в небольших количествах сверхтяжелые элементы должны встречаться на просторах Вселенной, и некоторые ученые ведут их поиски среди частиц космических лучей. По словам академика Оганесяна, этот подход все же не так надежен, как старая добрая бомбардировка. «По-настоящему долгоживущие ядра на «вершине» острова Стабильности содержат необычно большие количества нейтронов, — рассказывает ученый. — Поэтому нейтроноизбыточный кальций-48 оказался таким удачным ядром для бомбардировки нейтроноизбыточных элементов мишени. Однако изотопы тяжелее кальция-48 нестабильны, и чрезвычайно малы шансы на то, что они в естественных условиях смогут слиться с образованием сверхстабильных ядер».

Поэтому лаборатория в подмосковной Дубне обратилась к использованию более тяжелых ядер, пусть и не столь удачных, как кальций, для обстреливания искусственных элементов мишеней. «Мы сейчас заняты созданием так называемой Фабрики сверхтяжелых элементов, — говорит академик Оганесян. — В ней те же мишени будут бомбардироваться ядрами титана или хрома. Они содержат на два и четыре протона больше, чем кальций, а значит — могут дать нам элементы с массами 120 и больше. Интересно будет посмотреть, окажутся ли они еще на «острове» или же откроют новый пролив за ним».

ArefievPV

Вещество впервые расплавилось при температуре ниже точки замерзания
http://www.popmech.ru/science/321192-veshchestvo-vpervye-rasplavilos-pri-temperature-nizhe-tochki-zamerzaniya/

Представьте, что вы стоите в рефрижераторе. Вы смотрите на кубик льда, а тот вдруг начинает плавиться, при этом температуре вокруг не поднялась даже на градус. Вот именно что-то подобное ученые осуществили впервые за историю науки.

На самом деле довольно легко охладить жидкость до температуры ниже точки замерзания и оставить ее при этом в жидком состоянии. Но в недавнем опыте исследователи превратили твердый висмут, уже охлажденный ниже точки замерзания в жидкость, а температура плавления висмута 271 градус по Цельсию.

Итак, если вспомнить химию, то точка плавления представляет собой комбинацию температуры и давления, при которых твердые тела превращаются в жидкость. Но некоторые материалы можно плавить, не поднимая температуру, а понижая давление.

Именно это сделали ученые. Они держали висмут под большим давлением при температуре 215 градусов по Цельсию, потом подвергли его медленной декомпресии, в результате висмут стал плавиться, создавая так называемую метастабильную жидкость при температуре и давлении, когда в обычных условиях висмут должен остаться твердым. Статья об опыте опубликована в журнале Nature Communications.

Метастабильные жидкости отличаются от нормальных жидкостей тем, что обыкновенные жидкости можно болтать и передвигать, и они останутся жидкими. А метастабильные жидкости действуют несколько в обход физических законов, и любое внешнее воздействие на атомы вновь превращает их в твердый объект.

Ученые еще ни разу не плавили вещество, находящееся ниже точки замерзания, и этот эксперимент может открыть новые способы создания материалов, которые кристаллизуются так, как мы еще не видели никогда.

ArefievPV

Водород впервые перевели в металл
http://www.popmech.ru/science/321942-vodorod-vpervye-pereveli-v-metall/

Учёным из Гарвардского университета (США) впервые удалось осуществить фазовый переход Вигнера-Хантингтона, который свидетельствует об образовании металлического водорода.

Ещё в далёком 1935 году учёные из Принстонского университета (США) Юджин Вигнер и Белл Хантингтон обосновали теоретическое существование высокотемпературной сверхпроводимости водорода. Физики утверждали, что при давлении в 25 гигапаскалей и комнатной температуре водород должен находиться в металлическом состоянии и являться сверхпроводником. Спустя 80 лет эту теорию наконец-то удалось реализовать на практике!

Соавтор открытия профессор Айзек Сильвера сообщил, что это настоящий «священный Грааль в физике высоких давлений и первый образец металлического водорода на Земле». Чтобы перевести водород в металл, учёные поместили его между двумя алмазами, охладили до 5,5 кельвинов и применили гигантское давление в 495 гигапаскалей. С помощью измерений исследователи убедились, что у них получился металлический водород.

Спектроскопический анализ показал, что водород находится в атомарном состоянии, то есть именно в твёрдой, а не жидкой фазе. Переход водорода в металлическое состояние интересен тем, что он способен проводить электрический ток без сопротивления даже при комнатной температуре. Металлический водород также может быть использован в качестве топлива для ракет, которое позволило бы выводить на орбиту Земли значительно более тяжёлые грузы.

ArefievPV

Второй закон термодинамики может нарушаться в квантовом мире
http://www.popmech.ru/science/322452-vtoroy-zakon-termodinamiki-mozhet-narushatsya-v-kvantovom-mire/

Закон неубывания энтропии в замкнутых системах, который является одной из формулировок знаменитого второго начала термодинамики, может нарушаться: как оказалось, в квантовых системах энтропия может убывать, выяснила международная группа учёных под руководством ведущего научного сотрудника Лаборатории квантовой теории информации МФТИ и Института теоретической физики имени Л. Д. Ландау РАН Гордея Лесовика.

Результаты нового исследования опубликованы в журнале Scientific Reports (входит в группу Nature). «Мы нашли квантового демона Максвелла, который может уменьшить энтропию в системе, причём даже не измеряя её состояние», — говорит Гордей Лесовик.

Большинство процессов в рамках классической физики независимы от направления «стрелы времени»: любой из них можно развернуть в обратную сторону и никакие законы не будут нарушены. Однако симметрия по времени нарушается во втором законе термодинамики, который (в формулировке Клаузиуса) гласит, что тепловая энергия не может переходить от менее горячих объектов к более горячим, поэтому развернуть этот процесс в обратную сторону нельзя.

В 1870-х годах принцип роста энтропии был сформулирован в более строгой форме Людвигом Больцманом в его так называемой H-теореме (произносится «аш-теорема»). Она гласит, что величина энтропии в замкнутой системе, состояние которой описывается кинетическим уравнением (называемым теперь уравнением Больцмана), либо растёт, либо остаётся постоянной. Долгое время эту теорему не удавалось доказать в рамках традиционной статистической физики без привлечения дополнительных ограничений. После появления квантовой механики учёные предположили, что «корни» H-теоремы связаны с квантовыми явлениями. В квантовой теории информации были получены важные результаты, описывающие условия, при которых энтропия системы не убывает.

Группа под руководством Лесовика впервые сформулировала H-теорему на языке квантовой физики и в течение нескольких лет пыталась найти её доказательство. «Мы пытались доказывать: вроде бы, получалось, потом обнаруживалась «дырка», мы её закрывали, затем «дырки» появлялись опять, и в конце концов мы поняли, что это неспроста, что, может быть, эта теорема и не верна для квантовой системы и, даже если система энергетически изолирована, этого недостаточно, чтобы энтропия не убывала», говорит учёный. В результате учёные обнаружили условия, при которых второй закон термодинамики может локально нарушаться. Это может происходить в квантовых системах относительно небольшого, но макроскопического размера — сантиметры и даже метры. Существенное различие состоит в том, что если в классической физике уменьшение энтропии связано с передачей тепловой энергии, то в квантовом мире снижение энтропии может происходить без передачи энергии, за счёт квантовой запутанности.

«Представьте себе Золушку, которую мачеха заставляет разобрать перемешанную чечевицу и горох, то есть понизить энтропию в системе. Классическая Золушка в изолированной системе не смогла бы это сделать, а квантовая — может. Мы можем «вычистить» состояния за счёт квантовых эффектов», объясняет Лесовик.

По его словам, учёные в ближайшее время планируют провести экспериментальную проверку этого эффекта. Такой эксперимент откроет возможность создания квантовых холодильников и двигателей нового типа.

ArefievPV

Косная природа «адаптирована» (приспособлена) к нашей реальности. Так сказать, «заточена» под существующую реальность. Живые системы ещё более «адаптированы» (соответственно, ещё более «заточены», более «специализированы») к существованию в данной реальности. Но наиболее «адаптированы» к существованию в нашем мире оказываются разумные системы.

На каждой новой ступени приспособленности (косные системы, живые системы, разумные системы) наряду со всё большей «специализацией» отсекается (исключается) всё большее количество альтернативных путей развития (эволюции) систем. Живые разумные системы наиболее специализированы и наиболее приспособлены к существованию в нашем мире.

Можно предположить, что те формы (и способы) материи в которых она существует в нашем мире, сами по себе «отражают» некие глубинные «свойства» нашего мира.
Мы «обзываем» эти «свойства» некими сущностями. Пытаемся установить (найти, отыскать) некие закономерности (соотношения) между этими сущностями уже на психическом уровне (точнее, на «верхнем этаже» психического уровня – абстрактно-логическом) «отражая» существующую реальность. Но ведь на самом деле (??? и "на самом ли деле" вообще?) на более «низких» уровнях мы и так уже «отражаем» существующую реальность. Например, в психике на «нижних этажах» (образы, чувства, ощущения и т.д.), в строении нашего мозга, в строении живого организма (и отдельных клеток, и организма в целом), в строении сложных молекулярных структур (внутриклеточных и межклеточных), в строении молекул и атомов, в строении элементарных частиц и т.д.

Можно предположить, что если глубинные «свойства» мироздания окажутся иными, то и формы и способы существования материи также окажутся другими. Будут ли в таком мире «отношения» расстояния (пространства), времени, массы? Может быть «отношения»  пространства-времени поменяет свою размерность? Выскажу такую спорную мысль: возможно, что наша существующая реальность далеко не единственная. Просто в других реальностях будут и иные формы (способы существования) материи. Для нас такое представить сложно, ведь мы «заточены» под данную реальность...

ArefievPV

Название заметки не совсем корректное конечно, но содержание интересное...

Физики нашли металл, проводящий электричество без нагревания
http://www.vesti.ru/doc.html?id=2850850

Недавно исследователи из США сообщили об открытии металла, который проводит электричество и при этом практически не проводит тепло – невероятно полезное свойство, которое совершенно не соответствует сложившемуся представлению о том, как работают проводники.

Существование такого свойства у металла противоречит закону Видемана-Франца, который гласит, что хорошие проводники электричества также будут пропорционально хорошими проводниками тепла. Например, по этой причине моторы или различные электрические бытовые приборы нагреваются при их регулярном использовании и их необходимо охлаждать.

Исследователи показали, что такой закон совершенно не применим к двуокиси ванадия (VO2) – вещество, которое уже хорошо известно учёным благодаря странной способности "переключаться" между состояниями прозрачного диэлектрика и электропроводящего металла при температуре 67 градусов по Цельсию.

"Совершенно неожиданная находка, — говорит ведущий автор исследования материаловед Цзюньцяо У (Junqiao Wu) из Калифорнийского университета в Беркли. – Она демонстрирует серьёзное нарушение в хрестоматийном законе, который считался неопровержимым для обыкновенных проводников. Открытие имеет фундаментальное значение для понимания основ электронного поведения новых проводников".

Примечательно, что исследование учёных не только поможет узнать больше о неожиданных свойствах проводников, но оно также может пригодиться и в быту. Например, такой металл однажды можно было бы использовать для преобразования отработанного тепла из двигателей или электронных приборов обратно в электричество, или создавать улучшенные оконные покрытия, которые смогут сохранять прохладу в зданиях.

Специалисты уже знают о некоторых других материалах, которые проводят электричество лучше, чем тепло. Но они демонстрируют такие свойства только при температурах в сотни градусов ниже нуля по Цельсию (что довольно непрактично для любого реального применения). В то же время двуокись ванадия является проводником только при температурах выше комнатной. Следовательно, ему можно найти больше применений на практике.

Отмечается, что учёные, изучая это странное свойство вещества, наблюдали за тем, как движутся электроны внутри кристаллической решётки двуокиси ванадия, а также определяли, сколько при этом вырабатывается тепла. Выяснилось, что теплопроводность VO2 была в десять раз меньше, чем значение, предсказанное законом Видемана-Франца.

Причина этому, как представляется, может крыться в том, что "электроны оксида ванадия двигались в унисон друг с другом, как жидкость, а не как отдельные частицы в обыкновенных металлах", считает У.

"Для электронов тепло – это случайное движение. Обыкновенные металлы эффективно переносят тепло, поскольку существует множество различных возможных микроскопических конфигураций, между которыми отдельные электроны могут переключаться, — поясняет учёный. – Напротив, согласованное движение электронов в двуокиси ванадия пагубным образом сказывается на передаче тепла из-за меньшего количества конфигураций, между которыми электроны смогли бы "перепрыгивать".

Исследователи также смешивали диоксид ванадия с другими металлами, чтобы таким образом "настроить" объём тока и тепла, которое вещество проводило. Такие возможности очень пригодились бы для будущих применений, добавляют учёные.

Например, когда специалисты добавляли металл вольфрам к двуокиси ванадия, они снижали температуру, при которой материал становился металлическим, а также делали его лучшим проводником тепла.

Но в любом случае учёным предстоит провести ещё много исследований прежде, чем интересный материал найдёт применение в обычной жизни. Первые результаты научной работы и описание необычных свойств двуокиси ванадия опубликованы в научном издании Science.

Добавим, что ранее оказалось, что графен проводит электричество в 10 раз лучше, чем предсказывала теория.

ArefievPV

LIGO: уникальный детектор и генератор гравитационных волн
http://www.popmech.ru/science/326792-ligo-unikalnyy-detektor-i-generator-gravitatsionnykh-voln/

LIGO — это уникальный детектор гравитационных волн, точность измерений которого поражает воображение. Но ученые обнаружили еще одно интересное свойство системы: она может не только замечать, но даже создавать искажения пространства-времени, что открывает массу новых возможностей для физиков.

LIGO (Laser Interferometer Gravitational-Wave Observatory) — это не только самый чувствительный детектор искажений в ткани пространства-времени. Команда физиков рассчитывает, что этот прибор также сможет стать самым лучшим в мире генератором гравитационных волн. Хотя эти волны слишком слабы, чтобы быть непосредственно зафиксированными, исследователи говорят, что, теоретически, их можно использовать, чтобы попытаться обнаружить необычные квантово-механические эффекты среди крупных объектов.

Гравитационные волны буквально растягивают само пространство. В 1915 году Альберт Эйнштейн объяснил, что сила тяжести возникает, когда массивные объекты (к примеру, планета Земля) деформируют пространство-время (растягивают его, как натянутое одеяло, если бросить на него тяжелый шар). Эйнштейн также предсказал, что некоторые конфигурации массы будут излучать гравитационные волны. 1000 физиков, работающих с LIGO, дважды обнаруживала такие волны, исходящие из пары массивных черных дыр, вращающихся относительно друг друга по спирали.

LIGO опирается на чувствительные детекторы, расположенные в Хэнфорде, штат Вашингтон, и Ливингстоне, штат Луизиана. Каждый детектор состоит из пары перекрещенных, 4-километровых зеркал. Для обнаружения искривления пространства, ученые используют лазерное излучение: световые волны отскакивают от обоих зеркал (вес каждого составляет порядка 40 кг), после чего специалисты с помощью интерферометра замеряют то, как лазерные лучи взаимодействуют друг с другом. Гравитационные волны настолько слабы, что для обнаружения одной физики должны измерить длины обоих потоков с точностью до 1/10 000 ширины протона. Впечатляет, правда?

Однако тот факт, что LIGO настолько чувствителен к растяжению пространства-времени, означает, что он также чрезвычайно эффективен при генерации гравитационных искажений. Чтобы доказать это, Белинда Панг, физик Калифорнийского технологического института (Caltech) в Пасадене, представившая результаты работы на встрече Американского Физического общества, вместе со своими коллегами разработала квантово-механическую модель того, как растяжение пространства влияет на отражение лазерных лучей.

Для того, чтобы прибор был таким чувствительным, физики, работающие с LIGO, должны обеспечить устойчивость и стабильность положения пиков и контр-пиков каждой световой волны. Но квантовая неопределенность в этом случае говорит о том, чтобы размер волны (амплитуда) не будут столь четко заданной. Неизбежные колебания амплитуды создают крошечные колебания, и движение зеркал вызывает «крошечную рябь в пространстве-времени», говорит Панг. Конечно, эти гравитационные волны так малы, что вы и сами смогли бы создать более внушительное воздействие, попросту вращая шары для боулинга, но прибор делает это с оптимальной эффективностью.

По мнению Фань Чжан, физика из Пекинского педагогического университета, в этом нет ничего удивительного. «Фундаментальное правило детектора заключается в том, что если у вас есть связь с объектом или явлением, то она всегда будет направленной в обе стороны», поясняет ученый. Эти волны все еще могут быть использованы для обнаружения квантовых эффектов в среде макроскопических объектов, уверена Панг. Квантовая механика, как известно, утверждает, что исчезающе маленькие объекты (к примеру, электроны) буквально могут присутствовать в двух местах одновременно. Многие физики подозревают, что можно перевести и крупные объекты (к примеру, зеркало LIGO) в такое же состояние.

Подобное состояние в любом случае не продлится долго, так как для его стабильного поддержания объект надо изолировать от воздействия с внешним миром. Тем не менее, можно представить себе скорость, при которой состояние «декогерирования» удастся частично погасить. Некоторые теоретики предполагают, что гравитация играет особую роль в подавлении квантовых состояний в среде макроскопических объектов. Испытания, впрочем, будут очень сложными: физикам придется подавить и другие источники декогеренции, так что вряд ли это произойдет в ближайшем будущем. Впрочем, если когда-нибудь подобная операция и осуществится, то LIGO определенно сыграет в ней ключевую роль.

ArefievPV

Создано стабильное соединение гелия
http://www.popmech.ru/science/327072-sozdano-stabilnoe-soedinenie-geliya/

При помощи алгоритма, созданного российским учёным, удалось предсказать и экспериментально доказать существование устойчивого соединения самомго инертного химического элемента — гелия.

Гелий и неон — самые инертные элементы периодической системы; их электронные оболочки полностью заполнены, чтобы ионизировать атом гелия, нужно затратить очень много энергии, а сам присоединить чужой электрон он не хочет ни при каких условиях. Соединения гелия с другими атомами иногда удается получить, но срок их жизни крайне мал. В немногих устойчивых соединениях (с неоном и водой) гелий удерживается в структуре молекулы ванд-дер-ваальсовыми силами, не образуя химических связей.

Другие благородные газы — криптон и аргон — образуют соединения с магнием при очень высоких давлениях, поэтому учёные решили попытаться «додавить» и гелий. Искать подходящий реагент начали не в лаборатории, а в компьютерной программе при помощи алгоритма USPEX, который предсказывает кристаллические структуры заданных соединений. Алгоритм предсказал устойчивое соединение гелия только с натрием. Дальнейшие исследования показали, что меньше всего энергии потребуется затратить на образование соединения с формулой Na2He.

Затем расчёты проверили на практике. На остриях алмазных наковален, которые используют для приложения к образцам наибольших достижимых давлений, разместили тонкие натриевые пластинки, и заполнили пространство между ними гелием. Приборы показали, что соединение Na2He в эксперименте действительно получилось и было стабильно до тех пор, пока давление не упало ниже 113 Гпа. Его кристаллическая структура напоминает трехмерные шахматы, а само вещество оказалось диэлектриком.

Алгоритм USPEX, при помощи которого удалось предсказать существование Na2He, был разработан ведущим автором исследования, Артёмом Огановым в 2004 году. Статья об исследовании, проведенном международной группой ученых из МФТИ, Сколтеха, Нанкинского университета и Университета Стоуни Брук, опубликована в журнале Nature Chemistry.

ArefievPV

Твердая сверхтекучесть
http://www.nkj.ru/news/30900/
Новая супертвёрдая форма вещества сочетает в себе свойства твёрдых тел и сверхтекучих жидкостей.

Поведение физических объектов в так называемых стандартных условиях – при комнатной температуре и атмосферном давлении – привычно и интуитивно понятно: никому не нужно объяснять, что такое жидкость, и вряд ли найдется человек, который удивится, увидев, как кофе выливается из перевернутой вверх дном чашки.

Но с тех пор, как человек обнаружил в мироздании квантовые законы, нашу бытовую интуицию со здравым смыслом вкупе пришлось сильно ограничить в правах. Корпускулярно-волновой дуализм, квантовое туннелирование, запутанные фотоны – всё это стало экспериментально подтверждённой реальностью. Даже представление об агрегатных состояниях вещества потребовалось расширить: к газу, жидкости и твёрдому телу добавилась плазма, с которой мы, впрочем, сталкиваемся довольно редко.

Физические свойства тел во многом зависят от температуры. Речь не только о том, будет ли вещество твёрдым, жидким или газообразным, температура еще и «маскирует» некоторые особенности, следующие из квантовой природы материи. Дело в том, что тепловое движение атомов в некотором смысле усредняет структуру вещества, и многие свойства, теоретически свойственные системе, «размазываются» тепловыми эффектами. Яркий пример – сверхпроводимость, – состояние, при котором электроны в металле образуют «связанные» пары, что позволяет току течь без какого-либо сопротивления. При повышении температуры электронные пары распадаются на обычные электроны, и в материале возникает сопротивление. Физика конденсированных сред упорно ищет материал, который бы оставался сверхпроводящим при комнатной температуре, ведь это бы позволило сделать огромный технологический прорыв.

Помимо сверхпроводимости существует мириад квантовых фаз с самыми разнообразными и экзотическими свойствами. Одно из них – это сверхтекучесть, то есть нулевая вязкость. Например, будь кофе сверхтекучим, он «выползал» бы из чашки, а если бы мы его размешали, он бы крутился в воронке бесконечно.

Чтобы избавиться от усредняющего эффекта теплового движения атомов, квантовые фазы вещества приходится изучать в экстремальных лабораторных условиях: при низких температурах, в глубоком вакууме, а иногда и в сверхвысоких магнитных полях. По мере понижения температуры тепловое движение уступает по энергии квантовым свойствам вещества, и свойства вещества приобретают контринтуитивный характер. Такие головоломки обычно ведут к «новой физике» – исследователи вынуждены уточнять существующие модели, а то и разрабатывать новую теорию, чтобы объяснить неожиданные эффекты.

Впрочем, иногда бывает и наоборот, когда теоретические предсказания бросают вызов экспериментаторам. Так, недавно теоретики предположили, что в твёрдом гелии возможна сверхтекучесть, если атомы гелия будут двигаться в твёрдом кристалле гелия, проявляя так называемое супертвёрдое поведение. Как наблюдать такое поведение экспериментально, впрочем, было неясно.

Экспериментаторы из Массачусетского технологического института под руководством Вольфганга Кеттерле (Wolfgang Ketterle) приняли вызов. Они использовали лазер, чтобы перевести так называемый конденсат Бозе-Эйнштейна (КБЭ) в квантовую фазу, которая обладает упорядоченностью, как твёрдое вещество, одновременно сохраняя способность течь с нулевой вязкостью, как это положено сверхтекучей жидкости. (Напомним, что сам Вольфганг Кеттерле одним из первых начал экспериментировать с холодными атомами и конденсатом Бозе-Эйнштейна, а в 2001 году он разделил Нобелевскую премию с Эриком Корнеллом и Карлом Виманом, которые впервые создали КБЭ в лаборатории.)

Физики использовали лазерное охлаждение в сочетании с испарительными методами охлаждения: как испарение воды с поверхности кожи понижает температуру тела, так и испарение жидкого гелия позволяет охладить образец до тысячных долей градуса выше абсолютного нуля. Затем атомы замедляют за счёт различных эффектов, возникающих при взаимодействии со светом, как, например, описано здесь. Таким образом атомы натрия были охлаждены до нескольких нанокельвинов выше абсолютного нуля (шкала Кельвина эквивалентна шкале Цельсия, только она отсчитывает температуру от абсолютного нуля, то есть 0 K = -273.15°C).

При такой низкой температуре атомы натрия находятся в особом агрегатном состоянии, или квантовой фазе, которая и называется конденсатом Бозе-Эйнштейна. КБЭ формируется из бозонов – частиц с целочисленным спином, которые подчиняются статистике Бозе. Главная особенность бозонов заключается в том, что, в отличие от фермионов (то есть частиц с нецелым спином, например, электронов), они не подчиняются запрету Паули (напомним, это означает, что две частицы не могут находиться в одном и том же месте с одной и той же энергией). Бозоны же стремятся занять одно и то же состояние с наименьшей возможной энергией (типичный пример бозонов – фотоны), вследствие чего конденсат Бозе-Эйнштейна обладает необычными свойствами. В случае атомов натрия КБЭ представляет собой разреженный сверхтекучий газ.

Согласно Кеттерле, одна из главных задач эксперимента состояла в том, чтобы сформировать внутреннюю упорядоченность и собственную форму у КБЭ, чтобы его можно было назвать твёрдым телом. Создавая сверхтвердость, физики использовали лазерные лучи для управления атомами натрия в КБЭ. Главная цель такого лазерного облучения заключалась в том, чтобы создать спин-орбитальное взаимодействие в атомах конденсата Бозе-Эйнштейна. Это взаимодействие обычно присутствует в тяжёлых элементах, в которых электроны внешних оболочек сильно подвержены релятивистским эффектам. В результате магнитный момент электрона (спин) взаимодействует со своим же орбитальным моментом.

Атомы натрия находились в камере со сверхглубоким вакуумом, и с помощью лазеров половина атомов конденсата перешла в состояние с противоположным направлением спина. Стоит напомнить, что направление спина – приближённое понятие, поскольку в квантовомеханических системах подобные свойства подчиняются вероятностным законам, так что переворот спина – это сложный процесс, во время которого усреднённая проекция магнитного момента описывает определённую траекторию в пространстве.

Итак, с помощью лазера спины половины атомов «переворачиваются», и в ловушке фактически оказывается смесь двух разных КБЭ. По словам Кеттерле, «...дополнительные лазеры дают атомам с перевёрнутыми спинами дополнительный «толчок», чтобы осуществить спин-орбитальное взаимодействие».

Теоретики предсказали, что спин-орбитальное взаимодействие в КБЭ должно приводить к сверхтвёрдому состоянию за счёт спонтанной «модуляции плотности». Как и в кристаллическом твёрдом теле, плотность сверхтвёрдого тела не является постоянной, а имеет структуру, схожую с рябью или волнами – так называемую фазу полосок. Цзюньжу Ли (Junru Li), аспирант в группе Кеттерле, в связи с этим заметил, что «самое сложное – наблюдать модуляцию плотности. Рецепт по созданию сверхтвёрдого тела сам по себе прост, а вот сверхточная настройка лазерных лучей, чтобы всё стабилизировалось для наблюдения фазы полосок, – это действительно тяжёлая задача». Результаты экспериментов опубликованы в Nature.

На сегодняшний день сверхтвёрдое вещество существует только при экстремально низких температурах в ультраглубоком вакууме. Физики планируют новые эксперименты со сверхтвёрдым веществом и спин-орбитальным взаимодействием, чтобы лучше  понять и охарактеризовать новое состояние материи, которое они создали.

Другие исследовательские группы также работают над сверхтвёрдым веществом. Тильман Эсслингер и его группа в Швейцарской высшей технической школе Цюриха опубликовали альтернативный способ получения сверхтвёрдого вещества одновременно с командой Кеттерле. В их работе сверхтвёрдое состояние КБЭ получается при помощи системы зеркальных резонаторов, которые собирают лазерный свет, рассеянный атомами.

В перспективе нам предстоит еще больше узнать как о новой экзотической форме вещества, так и о самих явлениях сверхпроводимости и сверхтекучести; и кто знает, может быть, когда-нибудь кофе в чашке и впрямь закрутится в вечной воронке.

ArefievPV

Созданы «кристаллы в дискретном времени»
http://elementy.ru/novosti_nauki/432955/Sozdany_kristally_v_diskretnom_vremeni

«Кристалл во времени» — это необычная физическая концепция, теоретически предложенная несколько лет назад как иллюстрация спонтанного нарушения инвариантности законов физики от времени. Говоря привычными словами, это такая система, в которой в состоянии с наименьшей энергией и без какого-либо внешнего воздействия спонтанно возникало бы внутреннее движение. Быстро выяснилось, впрочем, что такая система невозможна — по крайней мере, в своей исходной формулировке. Однако совсем недавно физики предсказали, что, если вместо непрерывного течения времени взять его дискретный аналог, такая «кристаллизация» уже не будет ничему противоречить. На днях в журнале Nature были опубликованы две статьи разных коллективов экспериментаторов, сообщающие об успешной реализации таких «кристаллов в дискретном времени».
....
И в конце заметки:
Цитировать
Что дальше?

Надо признать, что описанные здесь реальные системы со стороны выглядят совсем не таким уж будоражащими воображение, как исходное предложение Вильчека и тем более как первая иллюстрация к этой новости. Ну да, в многочастичной системе под действием возмущения начинается какое-то движение — но зачем называть это красивыми, но малопонятными словами «кристалл в дискретном времени»? В сопроводительной заметке журнала Nature приводится мнение некоторых специалистов, что это некоторое лукавство, злоупотребление терминологией.

Может быть, и так. Но тут надо четко сказать, что ценность этих работ — и вообще этого очень юного направления исследований — не в самом этом термине, а в необычной системе, которую он обозначает. Ни много ни мало, предсказан и экспериментально продемонстрирован новый вид упорядоченности в многочастичных системах — упорядоченности жесткой, способной сопротивляться неидеальной настройке параметров. Оказывается, в этих нестационарных условиях можно говорить — в каком-то совершенно ином смысле — о термодинамических фазах, о кристаллизации и плавлении, о настоящих фазовых переходах. Можно строить фазовую диаграмму (рис. 5) и находить на ней линии плавления, можно измерять, какую долю всей системы занимает «кристалл во времени», а какую — хаотично эволюционирующая «жидкость». Можно строить новые системы, в которых кратность T/t составляет не два, а больше. Между прочим, первые шаги во всех этих направлениях тоже были сделаны в описываемых статьях. В общем, природа нам показала еще один способ стабилизировать отклик многочастичной квантовой системы — и его, безусловно, надо изучить и научиться использовать на практике.

ArefievPV

Что важно понимать о квантовом устройстве мира?
http://www.popmech.ru/science/360122-chto-vazhno-ponimat-o-kvantovom-ustroystve-mira/

Законы квантовой физики совершенно не похожи на те, что царят в нашем мире макротел. Когда рассматриваешь их, кажется, что это некая иная Вселенная, которая каким-то образом существует внутри нашей. Как такое вообще возможно?

Например, квантовые объекты могут находиться одновременно в двух местах. Мы даже в принципе не можем себе этого представить, так как для нас объект, находящийся в двух местах, это два объекта. Мы не можем одновременно находится на Земле и на Луне или одновременно в двух городах, а электрон в принципе может. Так почему электрон может находиться в двух местах, а человек — нет? Об этом без формул и доступными словами вам расскажет Александр Львовский — профессор университета Калгари и руководитель научной группы Российского квантового центра. Ролик подготовлен студией Sci-One TV.

Видео:
https://www.youtube.com/watch?v=Jb2WbLe5yQM

ArefievPV

Возможна ли телепортация?
http://www.popmech.ru/science/362772-vozmozhna-li-teleportatsiya/

Телепортация — одно из самых давних желаний человека, но, тем не менее, мечта о мгновенном перемещении из одной точки пространства в другую за долгие годы практически не приблизилась к осуществлению, Так возможна ли телепортация в принципе?

На уровне макрообъектов пока невозможно даже теоретически представить, как мгновенно переместить объект из точки А в точку Б. Конечно, существует знаменитое объяснение из научной фантастики, где пространство как бы складывают, из-за чего точки А и Б на краткий миг совмещаются, но это пока даже не теория, а скорее фантазия. А вот явление квантовой телепортации вполне научно, да и вообще элементарные частицы легко пребывают в двух местах одновременно. Вот только с классической телепортацией квантовая имеет мало общего. Почему? Узнаете из следующего видео. А также из него вы узнаете о том, почему команды всех кораблей из вселенной «Звездного пути» — это по идее копии копий давным-давно убитых оригиналов. Ролик подготовлен студией Научпок.

Видео:
https://www.youtube.com/watch?v=t0Vnbg2K8VE

Paleoimpact

Жизнеустройство пчел и муравьев.
Почему наше общество напоминает модель насекомых, при этом не эффективно даже на половину, учитывая человеческий потенциал?
Какова вероятность осознания себя в эпоху технологической сингулярности!?

ArefievPV

Ещё одна фантастическая идея. Типа, взгляд на электромагнетизм и гравитацию «под другим углом»...

Гравитационное взаимодействие формирует неоднородности (концентрирует гравитационный «заряд»), электромагнитное – наоборот, «стремится» к равномерному распределению электрического заряда (типа, существуют только силы отталкивания между электрическими зарядами). И оба вида взаимодействия – с неограниченным радиусом действия...

Полагаю, что электрический заряд можно представить, как наличие заряда в повышенной концентрации (например, отрицательный заряд) в неких материальных объектах (частицах) и как более низкую концентрацию заряда в других материальных объектах (типа, положительный заряд – это просто пониженная концентрация отрицательного). То есть, по сути, существует только один вид электрического заряда (отрицательный, например) и поэтому электромагнитное взаимодействие «стремится» распространить заряд по вселенной более равномерно (за счёт «сил отталкивания»). Типа, в те объекты, в которых низкая концентрация (положительный заряд), электромагнитное взаимодействие «направляет» дополнительный заряд.

Получается, что даже в вакууме концентрация электрического заряда выше, чем в некоторых материальных объектах (частицах) – положительно заряженных, то есть. Типа, в этих частицах «электрический вакуум» наблюдается, так сказать...