Интересные новости и комментарии

Автор Дж. Тайсаев, января 15, 2009, 02:31:37

« назад - далее »

АrefievPV

К сообщению:
https://paleoforum.ru/index.php/topic,2220.msg257490.html#msg257490

Та же самая новость в подаче другого ресурса.

Искусственный геном из двух генов успешно самовоспроизводится и эволюционирует
https://elementy.ru/novosti_nauki/433906/Iskusstvennyy_genom_iz_dvukh_genov_uspeshno_samovosproizvoditsya_i_evolyutsioniruet
ЦитироватьЯпонским ученым удалось создать предельно простую систему, воспроизводящую некоторые базовые свойства клеточной жизни — способность к самовоспроизводству и эволюции на основе дарвиновского механизма отбора. В этой системе присутствует искусственный «геном» (кольцевая ДНК), который размножается посредством репликации и рекомбинации. «Геном» содержит гены, которые кодируют ферменты, обеспечивающие эти два процесса (ДНК полимеразу фага phi29 и рекомбиназу Cre).

Транскрипция и трансляция этих генов осуществляется готовым коктейлем ферментов и низкомолекулярных соединений, добавляемым в систему в каждом раунде репликации. Реакции протекают в искусственно формируемых микрокомпартментах — капельках водно-масляной эмульсии, что обеспечивает необходимое условие для конкуренции и адаптивной эволюции «генома». Мутации, накопившиеся в кодирующих и некодирующих участках «генома» за 30 раундов (поколений) самовоспроизводства, повысили эффективность репликации в системе за счет нескольких установленных в ходе исследования механизмов.
ЦитироватьОт одного гена к двум, а там будет видно...

Ну что же — все работает. Но что, если сделать еще один шаг в сторону повышения автономности системы: не добавлять рекомбиназу в виде очищенного белка, а включить ген этого фермента в сам реплицируемый геном? Ответ на этот вопрос как раз и стал основой для обсуждаемой статьи.
ЦитироватьКонечно же, эта система еще сильно не дотягивает до того, чтобы представлять собой действительно некоторую форму «жизни». Помимо того, что для ее автономной работы не хватает большого количества необходимых белков, которые синтезировались бы внутри системы, здесь нет и намека на способность самостоятельно расти и делиться (формировать новые компартменты), осуществлять полноценный метаболизм (подразумевающий, в частности, активное введение определенных веществ внутрь клеток-компартментов и выведение других во внешнюю среду против градиента концентрации) и саморегуляцию. Но каждое из обозначенных выше свойств живого ученые постепенно учатся воссоздавать в искусственных биохимических системах, — эти работы ведутся многими лабораториями в разных странах. И все более реалистичным представляется, в свете последних достижений, сценарий появления в один прекрасный день новой «жизни из пробирки», эволюционно не связанной с LUCA — общим клеточным предком всех нынешних обитателей Земли.
P.S. О повышении автономности живых систем упоминал здесь (там целый гипотетический сценарий представил): 
https://paleoforum.ru/index.php/topic,9509.msg218092.html#msg218092

Степень автономности системы коррелирует со степенью «живости» (и даже, со степенью разумности) этой системы. Следует заметить, что автономность системы рассматривается по отношению к среде обитания (ближайшей и текущей). То есть, система более автономна именно к ближайшей/текущей среде обитания, а не вообще к среде обитания (живая система включена в среду обитания). По проявляемой степени автономности системы от среды мы разграничиваем живое и косное.

АrefievPV

Нейронауки в Science и Nature. Выпуск 217: технологии стирания памяти, часть 2. Как работает эпизодическая память?
http://neuronovosti.ru/naturesci-217-2-cali/
ЦитироватьЭто вторая часть большой нейроновости, которая описывает результаты статьи ученых из Японии. Благодаря технологии CALI ученые смогли продемонстрировать этапы формирования эпизодической памяти. Они показали, что ее зарождение происходит в гиппокампе, активно идет в момент сна с помощью повторного проигрывания запоминаемого события и затем окончательно стабилизируется уже в новой коре. Известные идеи получили свое подтверждение.

В предыдущей нейроновости мы рассказали о том, как работает технология CALI и как ученые проверили ее эффективность при стирании энграмм памяти. 

CALI стирает память у мышей

Убедившись в эффективности технологии, ученые применили ее в поведенческих тестах, чтобы проверить, как она может стирать эпизодическую память мышей.

Исследователи обучали мышь избегать определенной части клетки. Они помещали животное в светлую часть клетки. Затем перед мышью открывалась дверка, за которой находилась темная часть клетки. Через некоторое время (время ожидания), мышь переходила на темную сторону. Однако как только она наступала на пол в темной части, на нее воздействовали током. Негативное подкрепление помогало мыши обучиться тому, что темную часть клетки нужно избегать.

На следующий день мышь вновь помещалась в ту же самую клетку. Перед ней открывалась дверь в темную часть. Чтобы перейти в нее, мыши требовалось время. И это время ожидания было больше, чем в первый день. Это свидетельствует о том, что мышь усвоила урок. Если же мыши в первый день не получали удара током (контрольная группа), то во второй день они, наоборот, демонстрировали меньшее время ожидания, чем в первый день.

Придумав такой нехитрый поведенческий эксперимент, ученые решили применить технологию CALI для мышей в экспериментальной группе. В первый день, когда мышей помещали в клетку, после чего те переходили на темную сторону силы клетки и получали удар током, их затем стимулировали с помощью CALI. На следующий день эти мыши переходили в темное пространство также быстро, как и мыши из контрольной группы. То есть воспоминания о негативном событии у них не формировалось.

Если на второй день эксперимента вновь ударить мышь током, но затем не применять CALI, то на третий день мышь будет избегать темной стороны клетки. При этом эффект наблюдается только в том случае, если воздействовать на нейроны, содержащие комплекс CFL-SN. 

Вывод 1: CALI успешно стирает воспоминание, сохраняя возможность нейронов записывать дальнейшие события.

В следующем эксперименте ученые проверили, что будет, если после электрического воздействия на мышь применять CALI в разные временные промежутки. Так же, как и в первой части статьи, где мы описывали, как ученые проверяли технологию, исследователи стимулировали нейроны через 2, 5, 10, 20, 60 и 120 минут, а также за минуту до воздействия током. Результаты можно видеть на графике: память стиралась только в определенный промежуток времени. Уже через час воздействие CALI не изменяло наше воспоминание.

Вывод 2: воздействие с помощью CALI на гиппокамп эффективно в первый час после события.

Затем ученые смотрели, как CALI будет изменять память на контекст. Для этого в первый день мышь помещали в одну клетку, а во второй — в другую. Клетки могли отличаться текстурой, формой, размерами. Мышь обучали в первой клетке. Через 2 часа помещали во вторую. Животное спокойно переходило в темную часть второй клетки (понимая, что это другая клетка и не ассоциируя негативное воспоминание с ней), но не совершала такого действия в первой. Это означает, что мышь понимала, что находится в разных контекстах.

Затем ученые проделывали следующее: в клетке А мышь получала удар током. Затем в клетке Б она получала и удар током, и стимуляцию с помощью CALI. На второй день мышь в клетке А длительное время раздумывала, нужно ли ей переходить на темную сторону. То есть для клетки А формировалась память. Но в клетке Б период ожидания был значительно меньше. То есть память не формировалась, как видно из графика выше.

Вывод 3: CALI позволяет стирать определенные воспоминания, а не воздействует на всю структуру памяти.

Память мышонка, как, вероятно, и человеческая память, начинает формироваться в гиппокампе. Через некоторое время гиппокамп переводит память в стабильную форму, сохраняет воспоминание в неокортексе.

Известно, что после того, как произошло какое-то событие, группа нейронов в гиппокампе кодирует это событие характерным паттерном активности. Через некоторое время, когда событие уже в прошлом, гиппокамп вдруг начинает вновь проигрывать это событие (только быстрее). Таким образом, он как бы повторяет его. А повторение, как известно — мать учения.

Первая активность нейронов гиппокампа называется онлайн активностью. Вторая — оффлайн (то есть без самого события). Ученые с помощью технологии CALI решили проверить, возможно ли стереть память при оффлайн потенциации.

Для этого мышей через два часа после обучения стимулировали светом (CALI). Стимуляция проводилась через каждые 20 минуты. Одну группу стимулировали в течение первых четырех часов (спустя два часа после обучения), вторую — в течение вторых четырех часов, третью — восемь часов подряд. Ученые обнаружили, что память после любого такого воздействия была стертой. Если во второй день вновь обучить мышь и не применять стимуляцию, воспоминание формировалось.

Вывод 3: локальная оффлайн активность в гиппокампе служила основной воспоминания. Такая активность протекает спустя два часа и вплоть до следующего дня.

Ученые не остановились на этом и решили проверить, что происходит с нашей памятью во время сна. Они с помощью электроэнцефалограммы и электромиограммы определяли, бодрствует ли животное или же спит. Если мышь спала, то на ее нейроны оказывали воздействие с помощью CALI.

На следующий день после такого воздействия память оказывалась стертой. Если же CALI применялась в период бодрствования, нарушения памяти не наблюдалось. Влияние на сон на второй день также не приводило к стиранию воспоминания.

Вывод 4: память стабилизируется во сне в первый день после события. Это происходит в гиппокампе.

И это еще не все! Ученые решили с помощью наблюдения за уровнем ионов кальция в клетках определить, какое влияние оказывает онлайн и оффлайн активность гиппокампа на формирование памяти. Что важнее: оффлайн или онлайн?

Они измеряли уровень ионов кальция в первый день, когда мышь находилась в клетке без воздействия током. На второй день мышь помещали в ту же клетку: как только она переходила на темную сторону, ее били током. В одной группе мышей через 2 минуты нейроны, которые показывали высокую активность, освещали светом. В другой группе ученые освещали активные нейроны через 2 часа после события с частотой — 3 раза в час.

Таким образом, в одной группе воздействие оказывалось на онлайн этап долговременной потенциации, а в другой — на оффлайн. Контрольная группа мышей получала удар током, но не получала свою порцию CALI. На третий день мыши вновь помещались в клетку и проходили тест. В этот момент ученые повторно измеряли уровень ионов кальция.

Оказалось, что нейроны, которые не подвергались воздействию током, показывали слабую активность на следующие дни. У мышей, которые подвергались воздействию, но не получали стимуляцию CALI, нейроны активировались сильнее. Если же на эти нейроны подействовать с помощью CALI — их активность уменьшалась. Самое интересное заключалось в том, что активность наблюдалась в строго определенных нейронах. То есть мозг мыши использовал избирательную активность нейронов на онлайн этапе. Затем, на оффлайн этапе, эта активность повторялась, вовлекая дополнительные нейроны.

Эти нейроны демонстрировали синхронную активность. После воздействия током эта активность увеличивалась. Строго определенные нейроны формировали синхронизированную сеть, которая содержала воспоминание о негативном событии. В группе, где применялась CALI, синхронизация уменьшалась.

Вывод 5: онлайн-потенциация формирует след памяти в виде синхронной активности группы нейронов. Оффлайн потенциация закрепляет эту активность.

А что же происходит с воспоминаниями на следующие дни? Почему воздействие CALI на сон во второй день не дало никакого результата? Принято считать, что след памяти дальше переходит в новую кору. Часто при помещении мышей в знакомую клетку на следующие дни, у них наблюдается повышенная активность в передней поясной извилине (ACC).

Первое, что сделали ученые — проверили временное окно формирования памяти в ACC. Они стимулировали ACC спустя 2 минуты после события (то есть когда память по идее находится в гиппокампе) или каждые 20 минут (до 8 часов после события). Такое воздействие не приводило к потере памяти (как видно на графике ниже). И это логично — воспоминание все еще находится в гиппокампе.



Если стимулировать ACC с помощью CALI каждые 20 минут на второй день после обучения, а затем тестировать память на третий день, то нарушения памяти будут обнаружены. Получается, что на второй день след памяти мигрирует из гиппокампа в ACC. Однако, стимуляция на 25-ый день никакого результата не даст.



Таким образом, если обучить животное на первый день, а затем стимулировать ACC с помощью CALI на 25-ый день, никакого эффекта не будет. Видимо, в этот момент память уже приобретает очень стабильную форму, на которую CALI повлиять не может.

Вывод 6: на второй день память переходит в ACC, где продолжает консолидироваться.

По сути ученые подтвердили уже известные факты о памяти с помощью новой технологии. CALI успешно тормозила раннюю стадию долговременной потенциации.

Ученые показали, что существует два этапа долговременной потенциации в гиппокампе: онлайн и оффлайн. Первая способствует появлению отдельных групп нейронов, кодирующих конкретное событие. Вторая — вовлекает в синхронную активность дополнительные нейроны, что способствует упрочнению следа памяти.

Третья стадия происходит уже в новой коре. Переход воспоминания в неокортекс начинается во время сна на следующий день. В этот момент долговременная потенциация в гиппокампе исчезает, а энграмма появляется в коре (ACC). При том характерная для кодируемого события нейрональная активность тоже мигрирует в новую кору: мозг словно постоянно повторяет информацию. Это приводит к окончательной консолидации памяти.

АrefievPV

Удалось увидеть, как в мозжечке личинок данио-рерио строятся модели взаимодействия тела с внешним миром
https://elementy.ru/novosti_nauki/433910/Udalos_uvidet_kak_v_mozzhechke_lichinok_danio_rerio_stroyatsya_modeli_vzaimodeystviya_tela_s_vneshnim_mirom
ЦитироватьЕсли посчитать нейроны в разных отделах мозга, то результат получится неожиданным. Окажется, что в сравнительно небольшом выросте заднего мозга — мозжечке — содержится больше нейронов, чем во всей остальной нервной системе! Наиболее убедительное объяснение этому состоит в том, что в хитросплетениях нейронных связей мозжечка закодированы внутренние модели всего, с чем сталкивается двигательная система организма в течение жизни. Пример такой модели: если напрячь бицепс, то рука согнется. Этот кажущийся самоочевидным факт — на самом деле знание (то есть модель), полученное с опытом. Поскольку таких моделей нужно бесчисленное множество, то и нейронов, лежащих в основе этих моделей, должно быть очень много.

Группа нейробиологов из Института Нейробиологии Макса Планка в Мюнхене поставила перед собой цель подтвердить или опровергнуть эту гипотезу о внутренних моделях в мозжечке. Для этого ученые поместили крошечных личинок рыбок Danio rerio в виртуальную реальность, где они выполняли двигательную задачу, для которой требуется мозжечок. Эти личинки настолько маленькие, что они целиком умещаются под объективом микроскопа. А значит, можно наблюдать активность всех нейронов в мозге, пока рыбки выполняют свою задачу.

Авторам удалось увидеть — в прямом смысле этого слова — признаки существования внутренних моделей в нейронной активности мозжечка. Поскольку личинки находились на очень раннем этапе развития (как онто-, так и филогенетически), результаты указывают на то, что внутренние модели — это первичная и самая древняя функция мозжечка, в свете которой и следует рассматривать эту структуру мозга.

АrefievPV

Стимулом для появления многоклеточной жизни на Земле мог стать дефицит биодоступного железа
https://elementy.ru/novosti_nauki/433920/Stimulom_dlya_poyavleniya_mnogokletochnoy_zhizni_na_Zemle_mog_stat_defitsit_biodostupnogo_zheleza
ЦитироватьЗначение кислорода в зарождении и развитии сложной жизни на Земле общеизвестно. Кроме кислорода к «элементам жизни» относят водород, азот, углерод и фосфор. Но есть еще один химический элемент, тесно связанный в геохимическом плане с кислородом, роль которого в биологической эволюции ничуть не меньше. Это железо.

Начать хотя бы с того, что свободный кислород в атмосфере Земли появился только после того, как большая часть железа, растворенного в морской воде, окислилась и перешла в нерастворимую форму. Ученые из Великобритании и Франции выдвинули гипотезу, согласно которой образовавшийся при этом дефицит железа стал важным фактором движущей силы эволюции и способствовал появлению и развитию многоклеточных организмов.
ЦитироватьПо сравнению с современными эукариотами или многоклеточными организмами, более старые формы одноклеточной жизни, такие как бактерии и археи, для выживания больше нуждались в железе. Даже сегодня археи в геотермальных источниках Йеллоустона существуют только на матах из оксида железа, в то время как эукариоты могут жить вне этих минеральных источников.

Исследователи считают, что конкуренция за железо заставила бактерий и архей выработать новые виды поведения, позволяющие перерабатывать железо из мертвых клеток, красть железо из живых клеток или жить в другой клетке, используя для жизнедеятельности захваченное ею железо.

Так появились механизмы инфекции, фагоцитоза и эндосимбиоза, переключающие фокус получения железа с минеральных источников на другие формы жизни. Развитие этих механизмов, по мнению ученых, в конечном итоге привело к появлению сначала симбиотических союзов, а затем и полноценных многоклеточных организмов, использующих железо значительно более эффективно, чем древние одноклеточные.
ЦитироватьНо в конце протерозоя (800–600 млн лет назад) произошел новый резкий скачок содержания кислорода в морской воде, известный как событие неопротерозойской оксигенации (L. M. Och, G. A. Shields-Zhou, 2012. The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling), когда кислородом насытились все морские воды до глубин, на которые проникает солнечный свет, что привело к массовой гибели анаэробных цианобактерий и замене их аэробными, а содержание кислорода в атмосфере приблизилось к современным значениям (рис. 2).


Рис. 2. Изменение концентрации двух- и трехвалентного железа и парциального давления кислорода (fO2) в приповерхностных водах в течение геологической истории по отношению к современным значениям. Два резких скачка fO2 и падения уровня Fe2+ соответствуют Великому кислородному событию и событию неопротерозойской оксигенации. Рисунок из обсуждаемой статьи в PNAS

Это привело в конце протерозоя к перестройке всех биосистем и появлению многоклеточных организмов. Авторы считают, что предпосылкой для этого стала концентрация обладающих сидерофорами одноклеточных возле богатых железом геологических источников, что привело к «усложнению межклеточных взаимодействий».

На смену простого воровства железа — стратегии, которая присутствует до сих пор у некоторых бактерий, способных эффективно поглощать железо своих хозяев, — появилась новая более сложная стратегия симбиотического сотрудничества с использованием общих ресурсов. Характерный пример — богатые железом генерирующие энергию митохондрии, которые первоначально были бактериями, но затем вошли в состав эукариотических клеток.
ЦитироватьКлетки, которые не могли сами использовать кислород для генерации энергии, имели серьезные ограничения в возможностях развития. Бактерии же, обладающие сидерофорами, могли это делать. Заключив внутрь себя такие бактерии, клетки получали собственный источник энергии. Одна клетка могла захватить сразу несколько бактерий (так, в специализированных клетках мозга, сердца и мышц современных животных содержатся сотни и даже тысячи митохондрий). Еще большее преимущество в плане использования питательных веществ и выработки энергии, по мнению исследователей, получили агрегаты клеток, собирающиеся вместе и действующие как единые сложные организмы (рис. 3).


Рис. 3. Варианты адаптации одноклеточных к низкой доступности железа. А (простые механизмы) — конкурентное (competition), обманное (cheating) и кооперативное (co-operation) поведение. Секреция сидерофоров позволяет получать железо из минерализованных источников, но также приводит к сложным взаимодействиям между бактериальными клетками и видами, что может способствовать генетической изменчивости. В (сложные механизмы) — эндосимбиоз и появление клеток с митохондриями (endosymbiosis), фагоцитоз или хищничество (phagocytosis), инфекция (infection), многоклеточность, обеспечивающая запуск рециклинга железа (multicellularity). Рисунок из обсуждаемой статьи в PNAS
ЦитироватьУвеличение содержания кислорода в морской воде и атмосфере само по себе никак не способствовало развитию многоклеточности. Объединение клеток в многоклеточные агрегаты, действующие как единый организм, нужно было прежде всего для более эффективного использования дефицитных питательных веществ, таких как железо, сера или фосфор (о проблеме биодоступного фосфора на ранней Земле см. новости Жизнь на Земле могла возникнуть в щелочных озерах с высоким содержанием фосфора, «Элементы», 13.01.2020 и Накоплению биодоступного фосфора на ранней Земле способствовали удары молний, «Элементы», 31.03.2021). Внутри многоклеточных агрегатов эти вещества могли использоваться многократно, переходя от умирающих клеток к вновь образующимся. Такой механизм рециклинга давал многоклеточным организмам существенные преимущества перед одноклеточными.

АrefievPV

Бактерии используют левозакрученную ДНК в качестве каркаса для биопленок
https://elementy.ru/novosti_nauki/433921/Bakterii_ispolzuyut_levozakruchennuyu_DNK_v_kachestve_karkasa_dlya_bioplenok
Цитировать
Рис. 1. Слева направо: участки двойных спиралей A-ДНК, B-ДНК и Z-ДНК. A- и B-формы закручены вправо, а Z-форма — влево. Нетрудно заметить, что формы ДНК отличаются друг от друга по множеству геометрических параметров: размерам витка, наличию и ширине бороздок, диаметру спирали и ряду других свойств. Рисунок с сайта ru.wikipedia.org
ЦитироватьДвойные спирали молекул ДНК в живых клетках могут существовать в трех формах, различающихся геометрическими свойствами: правозакрученные A-ДНК и B-ДНК и левозакрученная Z-ДНК. Основная форма — B-ДНК, поэтому на нее «рассчитано» большинство клеточных белков, специализирующихся на взаимодействии с ДНК. Благодаря этому Z-ДНК, которая слишком сильно отличается от B-формы, для большинства клеточных ферментов недоступна. Как показано в недавнем исследовании, этим успешно пользуются некоторые бактерии, которые строят биопленки (в частности, на поверхности органов других организмов). Поскольку сами по себе молекулы ДНК довольно прочные, они хорошо подходят на роль каркаса биопленок. В процессе формирования биопленки бактерии при помощи специальных белков преобразуют выделяемую посредством аутолиза во внешнюю среду B-ДНК в Z-ДНК. Это делает каркас биопленки практически неуязвимым для иммунных клеток организма-хозяина.

АrefievPV

Замена небольшого участка генома на синонимичный заставляет бактерию иначе решать ту же эволюционную задачу
https://elementy.ru/novosti_nauki/433922/Zamena_nebolshogo_uchastka_genoma_na_sinonimichnyy_zastavlyaet_bakteriyu_inache_reshat_tu_zhe_evolyutsionnuyu_zadachu
ЦитироватьБиологическая эволюция базируется на двух основных процессах: мутационной изменчивости и естественном отборе. Мутационная изменчивость выступает в роли поставщика эволюционного материала, производя случайным образом разные мутации, из которых отбор сохраняет лишь полезные. Таким образом, согласно общепринятому представлению, именно отбор выполняет направляющую роль в эволюции и именно от него зависит, какими окажутся генотипы потомков, после того как в ряду поколений организмы адаптировались к какому-то новому неблагоприятному фактору среды.

Однако ученые из Великобритании, работая с двумя близкими, но немного разными штаммами бактерии Pseudomonas fluorescens с искусственно поломанной системой формирования жгутиков, показали, что сам процесс мутагенеза может иметь весьма закономерный характер и оказывается порой не менее значимым в предопределении конечного генофонда эволюционирующей и адаптирующейся популяции, чем фактор отбора. Спектры новообретенных мутаций, позволивших бактериям заново получить рабочий жгутик, оказались для разных штаммов разными, но хорошо воспроизводились в повторных экспериментах. А перестановка небольшого фрагмента ДНК между штаммами заставляла их переключаться с одного эволюционного пути на другой.
ЦитироватьВ английском языке для описания способности организма быстрее или медленнее формировать новые адаптации используют специальный термин evolvability. В русском языке для этого понятия, к сожалению, пока нет удобного эквивалента. Изучение факторов, благодаря которым у разных видов живых существ разная evolvability, — одно из горячих направлений в современной эволюционной биологии, в котором пока много открытых очень интересных вопросов. В частности, было бы здорово понять, могут ли эволюция и необходимость адаптации к часто меняющимся факторам среды содействовать формированию таких структурных особенностей молекул ДНК, которые повышают эту самую способность быстро производить новые адаптации (evolution of evolvability).

АrefievPV

Чем важнее ген, тем реже он мутирует
https://elementy.ru/novosti_nauki/433924/Chem_vazhnee_gen_tem_rezhe_on_mutiruet
ЦитироватьИзучение большого массива данных по мутагенезу у модельного растения Arabidopsis thaliana показало, что в разных участках генома мутации возникают с разной частотой.

Темп мутагенеза можно предсказать по эпигенетическим признакам, таким как уровень метилирования ДНК, открытость хроматина и модификации гистонов. Распределение этих эпигенетических меток, в свою очередь, зависит от функциональной нагрузки участков ДНК. В результате получается, что частота возникновения новых мутаций связана обратной зависимостью с функциональной важностью данного участка генома и с силой действующего на него очищающего отбора. Иначе говоря, в наиболее важных участках новые мутации не только активнее вычищаются отбором, но и реже возникают.

В частности, темп мутагенеза ниже внутри генов по сравнению с внешними (нетранскрибируемыми) областями и в жизненно важных генах, работающих постоянно, по сравнению с теми, что используются лишь эпизодически (например, включаются в ответ на какие-то внешние стимулы). По-видимому, в ходе эволюции у некоторых организмов под действием отбора развились молекулярные механизмы, снижающие частоту мутаций в наиболее важных частях генома. В основе их работы лежит привлечение ферментов репарации и других факторов, защищающих ДНК от повреждений, к определенным эпигенетическим меткам.

Исследование показало, что неслучайный мутагенез играет важную роль в эволюции геномов. Некоторые характерные особенности молекулярной эволюции, которые обычно объясняют действием отбора (например, ускоренное накопление различий в менее важных участках генома), на самом деле во многом объясняются неслучайным мутагенезом. Который, впрочем, сам является результатом эволюции под действием отбора.

АrefievPV

Вода из ядра
https://www.nkj.ru/news/43305/
ЦитироватьНедра ранней и горячей Земли сохранили для нас воду – как такое возможно?

Вода не только неразрывно связана с возникновением земной жизни, но и обеспечила условия для её эволюции. Ведь около трёх миллиардов лет жизнь существовала и развивалась исключительно в океанах, которых не было бы, не будь на планете более-менее стабильного климата. Кроме того, даже небольшие количества воды в недрах Земли размягчают горные породы — необходимое условие для тектоники плит, которая в свою очередь ответственна за форму континентов и океанов, землетрясения и вулканическую активность – всё то, что определило облик нашей Земли. Несмотря на столь большую роль воды в эволюции живого и неживого на Земле, до сих пор не совсем понятно, откуда на Земле столько воды.

По одной гипотезе воду могли занести к нам кометы, однако изотопный состав земной и кометной воды разный. Другая гипотеза говорит, что вода высвободилась из земных недр. Но тогда возникает вопрос, как первобытный океан смог пережить бурные первые десятки миллионов лет в истории Земли, когда она была раскалена, подвергалась массированной бомбардировке астероидами и даже столкнулась с древней протопланетой. Все эти катаклизмы должны были расплавить верхние несколько сот километров земной коры и навсегда испарить воду с поверхности планеты.

Но если вода всё-таки спряталась где-то в глубине Земли, должно существовать химическое вещество, способное подолгу удерживать молекулы воды при высокой температуре и колоссальном давлении миллионы лет. И потом высвободить её в более спокойную эпоху.

Как пишут в журнале Physical Review Letters исследователи из Нанькайского университета Сяо Дуна вместе с коллегами из Сколтеха, на роль такого соединения подходит гидросиликат магния Mg₂SiO₅H₂. Он содержит 11% воды по массе и стабилен при давлении более 2 млн. атмосфер и крайне высоких температурах — как раз таких, как в ядре Земли. Но тут возникает следующий логичный вопрос. В центре Земли, как мы знаем, находится металлический шар, состоящий в основном из железа, и никаким гидросиликатом магния там не пахнет. Так куда тогда податься воде?

Как рассказывает один из авторов работы, профессор Артём Оганов, на начальном этапе существования Земли у неё могло не быть никакого сформированного ядра. Химический состав молодой планеты был однородным от поверхности до самых глубин. Понадобилось порядка 30 млн. лет, чтобы железо сконцентрировалось в центре Земли, образовав ядро и вытеснив оттуда силикаты в мантию. Если это верно, то на протяжении первых 30 млн. лет, во время наиболее катастрофической фазы астероидной бомбардировки, часть земной воды была надёжно спрятана на глубине нынешнего ядра в виде гидросиликатов. А когда закончился процесс формирования ядра, гидросиликаты были вытеснены из центральной области планеты в зону более низкого давления, где они оказались нестабильны и подверглись распаду. Так образовались оксид и силикат магния — из них сейчас состоит мантия — и вода, постепенный подъём которой на поверхность занял ещё около 100 млн. лет.

Новая гипотеза происхождения, а точнее сохранения земной воды даёт новый взгляд на судьбу воды на других планетах. Например, Марс – он меньше Земли, поэтому давление внутри его ядра меньше и гидросиликат магния в нём неустойчив. У воды не было возможности «пересидеть» бомбардировку в безопасном месте, поэтому на Марсе так мало воды, а существующую сейчас воду, возможно, занесли как раз кометы. А что на экзопланетах? Внутри массивных планет земного типа – так называемых суперземлях – высокое давление, стабилизирующее гидросиликат магния, существует за пределами ядра. Поэтому их недра теоретически способны удерживать ещё большие объёмы воды, чем Земля. И, возможно, условия для эволюции жизни на них не менее благоприятные, чем на нашей планете.

АrefievPV

Микроорганизмы выдержали экстремально высокие температуры из-за ускоренного метаболизма
https://nplus1.ru/news/2022/01/29/nankai-trough-bacteria
ЦитироватьВ 2016 году в ходе экспедиции «370» в Нанкайском желобе были обнаружены микроорганизмы, способные существовать при температуре 120 градусов Цельсия. Группа ученых из шести стран исследовала эти микроорганизмы и выяснила, что выдерживать такие экстремальные условия им помогает высокая скорость метаболизма. Об этом сообщается в статье, опубликованной в журнале Nature Communications.

Считается, что в отложениях, находящихся ниже уровня океанического дна (ультраабиссали), содержится большое биологическое разнообразие микроорганизмов. Существование таких организмов ограничено доступностью органических веществ и температурой, которая повышается на 30 градусов Цельсия с каждым километром по мере приближения к центру Земли.

Высокая температура повреждает белки и нуклеиновые кислоты, которые необходимы для функционирования клеток. Долгое время считали, что 80 градусов Цельсия — максимально высокая температура, при которой способны существовать микроорганизмы. Но в 2016 году экспедиция «370», включавшая ученых из девяти стран, исследовала Нанкайский желоб — глубоководную впадину в Тихом океане, расположенную к югу от японского острова Хонсю. В ходе экспедиции исследователи извлекли образцы пород, располагавшиеся на разных глубинах. Самый глубокий образец (1177 метров ниже уровня океанического дна) был извлечен из участка C0023, где температура достигала 120 градусов Цельсия. Несмотря на аномально высокую температуру, в этом образце были найдены микроорганизмы. Из-за маленькой численности установить видовой состав популяции микроорганизмов не удалось.

Группа ученых из Германии, Дании, США, Швейцарии, Швеции и Японии под руководством Тины Тройде (Tina Treude) из Калифорнийского Университета в Лос-Анджелесе исследовала микроорганизмы, обнаруженные в образцах из Нанкайского желоба, включая образец из участка C0023. C помощью радиоизотопного анализа серы-35 и углерода-14 исследователи оценили скорость сульфатредукции и метаногенеза, характерных для глубоководных микроорганизмов. Затем рассчитали теоретическую скорость прироста биомассы. Скорость прироста биомассы микроорганизмов, извлеченных из участка C0023, была на несколько порядков выше, чем скорость метаболизма тех, кто обитал на меньшей глубине и при меньших температурах.

Авторы отмечают, что увеличение интенсивности метаболизма глубоководных микроорганизмов, скорее всего, связано с возрастанием энергетических затрат на устранение температурных повреждений. В первую очередь к таким повреждениям относится рацемизация аминокислот — спонтанное превращение L-аминокислот в составе белка в D-аминокислоты. Рацемизация может искажать структуру белка и нарушать его работу. Деградировать такие белки и заменить их новыми, включающими только L-аминокислоты, — самый простой и энергетически выгодный способ решения этой проблемы. Но это возможно только при наличии достаточного количества аминокислот во внешней среде, а при температуре выше 45 градусов Цельсия они быстро разлагаются. Поэтому микроорганизмы вынуждены использовать более энергозатратный способ и активировать ферменты, которые превращают D-аминокислоты в L.

В глубоководных желобах часто находят что-нибудь интересное. Например, в Зондском желобе (Индийский океан) на рекордной для головоногих моллюсков глубине — свыше шести тысяч метров — обнаружили осьминога из рода Grimpoteuthis. А в Атакамском желобе (Тихий океан) на глубине свыше семи тысяч метров нашли три новых вида липардовых рыб.

АrefievPV

Продублирую сюда новости из другой темы (кратко, развёрнуто в исходной теме):
Цитата: АrefievPV от января 28, 2022, 05:41:25
Как появляется воспоминание?
http://neuronovosti.ru/kak-poyavlyaetsya-vospominanie/
Какие физические изменения происходят в мозге при формировании воспоминания? Группа исследователей из Университета Южной Калифорнии впервые ответила на этот вопрос. После шести лет исследований они обнаружили, что обучение заставляет синапсы – связи между нейронами – увеличиваться в одних областях и исчезать в других, а не просто изменять их силу, как это было принято считать. Эти изменения в синапсах могут помочь объяснить, как формируются воспоминания и почему одни виды воспоминаний сильнее других. Исследование опубликовано в Proceedings of the National Academy of Sciences.
Цитата: АrefievPV от января 31, 2022, 06:26:53
Астроциты регулируют когнитивную гибкость мозга
http://neuronovosti.ru/astrotsity-reguliruyut-kognitivnuyu-gibkost-mozga/
Группа исследователей из Центра сознания Института базовых наук в Тэджоне (Южная Корея) обнаружили, что астроциты – глиальные клетки, которые имеют характерную форму звезды – регулируют когнитивную гибкость. Ученые установили способность астроцитов мгновенно регулировать синаптическую пластичность ближайших к ним межнейронных соединений, которая играет важную роль в процессах когнитивной гибкости. Об этом они рассказали в журнале Biological Psychiatry.

АrefievPV

Поддерживать мышечную массу во время спячки сусликам помогают кишечные микробы
https://elementy.ru/novosti_nauki/433930/Podderzhivat_myshechnuyu_massu_vo_vremya_spyachki_suslikam_pomogayut_kishechnye_mikroby
ЦитироватьУченые из Висконсинcкого университета, уже много лет изучающие феномен спячки у млекопитающих, выяснили, как животным удается во время спячки поддерживать необходимый уровень азотистого обмена. Ведь животные в этом состоянии не получают никакой пищи, тем более белковой, а мышечная масса к концу спячки у них не меняется и с началом весеннего сезона они возобновляют активность как ни в чем не бывало.

Исследование, проведенное на тринадцатиполосых сусликах (Ictidomys tridecemlineatus), показало, что в поддержании требуемого уровня азотистых веществ участвует микрофлора кишечника. Кишечные бактерии утилизируют мочевину, возвращая азот в обменный круговорот в виде аммония, а также готовых аминокислот и белков. Организму спящего животного остается лишь воспользоваться удобным дополнительным источником азотистых продуктов. Такой способ получения белка характерен для жвачных, адаптированных к низкобелковой диете. Теперь выясняется, что и другие животные могут при необходимости использовать тот же путь получения белка, синтезированного микрофлорой.

Alexeyy

Слыхал, что у человека - тоже такое обнаружено (в толстой кишке) и что, при определённых, условиях, может быть жизненно важным.

АrefievPV

Цитата: Alexeyy от января 31, 2022, 08:52:50
Слыхал, что у человека - тоже такое обнаружено (в толстой кишке) и что, при определённых, условиях, может быть жизненно важным.
Что именно обнаружено? Непосредственное (самим организмом) использование мочевины (своей же) для синтеза аминокислот и строительства белков? Или всасывания компонентов разрушенных бактерий? Или что-то другое?

Нашёл ссылку (наверное, не в тему):
https://medbook.ru/blog/29530

Возможно, я не понял вашего замечания...

Alexeyy

(Косвенно) Обнаружен азотофиксирующий механизм с помощью бактерий. Но, предполагалось, что азот фиксируется из воздуха (как-то так, как это происходит у коровы и благодаря чему и происходит переваривание клетчатки и образование аминокислот; т.е. у человека в толстой кишке может реализовываться коровий принцип пищеварения; хотя, обычно, клетчатка у человека - не переваривается).

АrefievPV

Нейронауки в Science и Nature. Выпуск 219: как устроена обонятельная навигация
http://neuronovosti.ru/nejronauki-v-science-i-nature-vypusk-219-kak-ustroena-obonyatelnaya-navigatsiya/
ЦитироватьЗапахи — фундаментальная часть сенсорной среды, которую животные используют для поиска пищи и навигации. Ансамбли грушевидных нейронов в обонятельных областях лобной коры одновременно представляют идентичность запаха, а также пространственное расположение животных, образуя карту запахов. В работе, опубликованной в журнале Nature, ученые из США и Португалии предположили и доказали, что нейроны задней грушевидной коры несут надежное пространственное представление об окружающей среде.

Исследование представляет собой потенциальное объяснение того, как органы чувств используются для навигации и запоминания. Исследователи использовали записи нейронного ансамбля грушевидных нейронов в обонятельной коре, представляющей собой часть лобной коры, у свободно движущихся крыс, которые выполняли задачу пространственного выбора по запаху. Несмотря на то что люди больше полагаются на визуальные ориентиры, чем на запахи, принципы того, как мы запоминаем то, где были, и как добираемся туда, куда направляемся, очень похожи.

Запах обладает способностью переносить нас во времени и пространстве. Это может быть сладкий аромат жасмина или затхлый запах пыльного чердака. Внезапно мысленно вы оказываетесь в доме своего детства или под палящим солнцем далекого берега.

«Молекулы запаха по своей сути не несут пространственной информации. Однако животные в дикой природе используют запахи для пространственной навигации и памяти, которые позволяют им находить ценные ресурсы, такие как пища», — говорят авторы.

Часть нейронов гиппокампа и расположенной рядом энторинальной коры известны тем, что функционируют как «клетки места». Это происходит потому, что каждая клетка  становится активной в определенном месте в среде. Вместе эти нейроны кодируют все пространство вокруг, эффективно создавая нейронную сетку координат и фиксируя ваше нахождение в ней. Эта система GPS в мозге была удостоена Нобелевской премии по физиологии или медицине в 2014 году. И она настолько надежна, что только лишь по наблюдению за активностью ее нейронов ученые могут определить, в какой части клетки в данный момент находится животное.

Нейроны же обонятельной коры также участвуют в кодировании пространственных карт. Исследователи обнаружили, что они, подобно клеткам гиппокампа, способны активизироваться в определенном месте лабиринта. Интересно, что эта карта не охватывала всю окружающую среду одинаково. Вместо этого она была в значительной степени ограничена поведенчески значимыми местами в лабиринте: теми, где животные ощущали определенные запахи и получали награды.

«Обонятельная система уникальна среди органов чувств. Только обоняние имеет прямые взаимные связи с системой гиппокампа, которая участвует в памяти и навигации. Следовательно, можно предположить, что активация ассоциаций запахового пространства может происходить посредством активности в этой сети», — отмечает руководитель исследования Захари Майнен (Zachary F. Mainen), главный исследователь Центра неизвестного Шампалимо в Португалии.