Интересные новости и комментарии

Автор Дж. Тайсаев, января 15, 2009, 02:31:37

« назад - далее »

Micr

Мусорная ДНК участвует в развитии мозга

https://indicator.ru/news/2018/01/19/musornaya-dnk-uchastvuet-v-razvitii-mozga/

Цитировать© Индикатор. Интернет-издание.
Использование всех текстовых материалов в электронной форме без изменений в некоммерческих целях разрешается в объеме не более 30% от исходной информации, только с активной ссылкой на издание «Индикатор».

ArefievPV

Обезьян клонировали, как овец
http://www.nkj.ru/news/33088/
Спустя почти два десятилетия бесплодных попыток биологи сумели получить обезьяний аналог овечки Долли.

Овечка Долли, появившаяся на свет в 1996 году, была первым клонированным млекопитающим – то есть она представляла собой полную копию другой овцы, у которой брали генетический материал для клонирования.

Суть клонирования состоит в том, чтобы взять ДНК из клетки взрослого организма, например, из клетки кожи, и пересадить ее в яйцеклетку, из которой предварительно удалили ее собственную ДНК. ДНК содержится в ядре, и на практике все сводится к удалению яйцеклеточного ядра и пересадке в него ядра из другой клетки (митохондриальной ДНК, которая есть у яйцеклетки, в данном случае пренебрегают). Поэтому метод и называется – пересадка ядра соматической (то есть не-половой) клетки.

Как известно, в яйцеклетке исходно находится одинарный, или гаплоидный, набор хромосом. При оплодотворении в нее приходит второй набор хромосом от сперматозоида, и это значит, что яйцеклетка может начать развиваться. Пересаживая в нее чужое ядро, мы даем ей тот самый двойной набор хромосом, необходимый для полноценного развития, и остается только слегка подтолкнуть яйцеклетку с помощью специальных молекулярных сигналов. Затем ее пересаживают в суррогатную мать и ждут, что получится.

После Долли было много попыток клонировать других животных, и к настоящему моменту получилось сделать клоны более чем у двадцати видов млекопитающих, среди которых есть кошки, собаки, крысы и даже верблюд. Пытались клонировать и обезьян, но с ними раз за разом случались неудачи – оказалось, что обезьяньи клетки хуже переносят пересадки ядер, чем, скажем, клетки коров или мышей: клонированные эмбрионы гибли на ранних стадиях развития.

Дело в том, что яйцеклетка, получив в свое распоряжение чужую ДНК, должна перепрограммировать ее. Мы знаем, что в каждой клетке активны те гены, которые ей нужны в данный момент. Зрелой клетке, будь то клетка кожи, мышц или печени, совершенно не нужны гены, отвечающие за эмбриональное развитие – и эти гены хранятся в упакованном виде в комплексе со специальными белками. Яйцеклетке, чтобы начать развиваться, нужно эмбриональные гены распаковать, но, как оказалось, у приматов тут все непросто: какие-то из нужных генов распаковать просто не получается.

Как пишет портал Science, исследователи из Китайской академии наук сумели это препятствие преодолеть. В яйцеклетки макак-крабоедов они добавляли молекулы, которые помогали активировать «трудные» эмбриональные гены – те, которые яйцеклетка не могла включить сама.

Ядра для пересадки брали из яичника взрослой обезьяны и из клеток соединительной ткани развивающегося плода. Клонирование из яичников закончилось неудачно: хотя из сорока двух потенциальных суррогатных матерей успешно забеременели двадцать две, детеныши родились только у двоих, да и эти две клонированных макаки прожили очень недолго после рождения.

А вот с ядрами, вытащенными из клеток плода, все закончилось более-менее удачно: яйцеклетки пересадили двадцать одной самке, из которых шесть успешно забеременели, и две в итоге родили здоровых детенышей, которые остались живы. Клонов назвали Чжун Чжун и Хуа Хуа; подробно результаты экспериментов описаны в статье в Cell.

Может показаться, что два детеныша на двадцать одну попытку (или на шестьдесят три попытки, если учесть первую серию с клонированием из яичников) – это не очень эффективно. Однако тут стоит вспомнить, что овечка Долли в свое время была единственным удачным клоном из 277 попыток. С тех пор техника клонирования пересадкой ядер значительно усовершенствовалась, и, например, клонирование свиней происходит успешно в 80% случаев. Так что, скорее всего, для обезьян метод тоже усовершенствуют, а заодно и преодолеют трудность, связанную с тем, что генетический материал для клонирования нужно брать у плода, а не у взрослых животных.

Клонирование приматов – это не просто демонстрация возможностей современной биологии. На клонах чрезвычайно удобно изучать влияние внешних и внутренних факторов, от которых зависят те или иные заболевания. Когда эксперименты ставят на грызунах, то используют мышей или крыс одной линии, которые генетически не отличаются друг от друга, и поэтому, анализируя ту или иную мутацию или эффект от какого-нибудь лекарства, у исследователей не болит голова насчет генетического разнообразия среди лабораторных особей. Иными словами, если какой-то крысе лекарство помогло, а другой – нет, то дело в не в том, что у них разные варианты генов – они у них одинаковые; а лекарство не сработало либо из-за собственной неэффективности, либо, например из-за того, что крысы по-разному питались.

Другой большой вопрос, которые требует генетически одинаковых подопытных – развитие нервной системы. Какие особенности мозга и психики жестко заложены в генах, а какие формируются под влиянием внешней среды? Имея в своем распоряжении клонов, здесь можно узнать массу нового, варьируя для них эти самые условия среды.

Приматы намного ближе к человеку, чем грызуны, и было бы хорошо, если бы многие эксперименты проводили именно с ними. Но получить чистую линию обезьян с нивелированными генетическими различиями очень непросто, и техника клонирования может прийтись тут как нельзя более кстати.

ArefievPV

Противораковая «вакцина» уничтожает опухоль вместе с метастазами
http://www.nkj.ru/news/33165/
Если разбудить Т-лимфоциты, сидящие внутри опухоли, они не только уничтожат ее саму, но и найдут другие очаги болезни, рассеянные по организму.

Одна из задач иммунитета – находить и уничтожать раковые клетки, но у него это по разным причинам не всегда получается: с одной стороны, иммунная система сама по себе может быть не очень активной, с другой – у раковых клеток есть множество уловок, которые позволяют им оставаться невидимыми для иммунитета. Поэтому медики и биологи активно ищут способы, чтобы «разбудить» иммунную систему и натравить ее на злокачественные клетки.

Один из таких способов – общая стимуляция иммунитета. Другой подход, более тонкий, заключается в том, чтобы подействовать именно на противораковую активность иммунной системы, то есть активировать те молекулярно-клеточные сигналы, которые настраивают иммунные клетки на  уничтожение опухоли.

Есть еще более сложные методы, например, когда у больного берут иммунные клетки, «воспитывают» их в пробирке так, чтобы они узнавали злокачественные клетки конкретной разновидности (те, которые есть у самого больного), а потом вводят обратно в организм; таким образом повышается точность и эффективность иммунного оружия.

Все эти подходы вполне успешно применяются, но у них есть и отрицательные стороны: во-первых, порой случаются неприятные побочные эффекты (слишком сильная реакция «разогретого» иммунитета может повредить здоровым тканям), во-вторых, настройка иммунной системы на врага занимает довольно много времени, да и стоят подобные методы очень недешево.

В этом смысле работа исследователей из Стэнфорда кажется без преувеличения революционной. Мы говорили, что иммунные клетки, а именно Т-лимфоциты, могут распознавать злокачественные клетки и проникать вглубь опухоли, однако опухоль их просто «усыпляет».

Рональд Леви (Ronald Levy) и его коллеги придумали, как «разбудить», то есть реактивировать Т-клетки, чтобы они вспомнили про борьбу с раком. Для этого оказалось достаточно ввести прямо в опухоль смесь двух веществ. Первое – короткие фрагменты ДНК особой структуры, в которых чередуются нуклеотиды цитозин и гуанин (генетические буквы Ц и Г). Дело в том, что такие ДНК из цитозина/гуанина, попав к иммунным клеткам, стимулируют синтез у Т-лимфоцитов поверхностных рецепторов под названием OX40. Они связывают целую группу белков, которые называются факторами некроза опухоли: когда Т-лимфоцит получает через рецептор OX40 такой сигнал, он выделяет порцию других сигнальных белков, понуждая опухолевые клетки к смерти.

Но OX40-рецепторы можно активировать не только факторами некроза опухоли, но и специально сконструированными антителами. Именно такие антитела стали вторым веществом, которое вводили в опухоль. Получалась следующее: короткие куски ДНК заставляли Т-лимфоциты синтезировать как можно больше рецепторов OX40, а антитела связывались с этими рецепторами, поддерживая Т-клетки в бодрствующем противоопухолевом состоянии.

Почему антитела и ДНК вводили прямо в опухоль? Потому что в опухоли сидели те Т-лимфоциты, которые уже знали, как выглядят опухолевые клетки, запомнили их молекулярный портрет – иначе бы они не забрались в опухоль. То есть их не нужно было учить против кого сражаться, их нужно было только «разбудить». Поэтому, строго говоря, новое лекарство нельзя назвать вакциной – настоящие вакцины помогают иммунитету выучить, как будет выглядеть будущая опасность; здесь же иммунитет уже знает, с кем бороться, просто никак не может начать борьбу.

Эксперименты ставили с мышами, которым вживляли срезу две опухоли лимфомы в разные места, имитируя вторичный очаг болезни, возникший как бы в результате метастазирования. При этом лечебную смесь вводили только в одну из них. В статье в Science Translational Medicine говорится, что исчезала не только та опухоль, куда ввели ДНК и антитела, но и вторая. То есть некоторые из проснувшихся Т-клеток покинули одну опухоль и добрались до второй. Иными словами, препарат, введенный локально, действовал глобально, в масштабе всего организма. Действовал притом весьма эффективно: из 90 мышей с опухолями у 87 опухоль исчезла после однократного применения нового средства. У оставшихся трех животных рак вернулся, но потом окончательно исчез после повторной инъекции.

Исследователи проверили свой способ и с другими видами опухолей: с меланомой, раком молочной железы и раком толстой кишки – и результаты оказались те же: активированные Т-клетки истребляли все виды рака. Наконец, в еще одном эксперименте мышам кроме двух лимфомных опухолей пересаживали опухоль толстой кишки, после чего лекарство вводили в одну из лимфом. В результате у мышей исчезали только лимфомные опухоли, а вот кишечная оставалась на месте.

Почему так происходило, вполне понятно: активированные Т-клетки, которые сидели в лимфоме, знали, как выглядит «их» опухоль, но не знали, как выглядит кишечная. То есть эффект оказался очень специфичным, и можно было не бояться, что Т-клетки превысят свои полномочия – раз уж они даже другой рак не трогают. В самом начале мы упоминали про метод, в котором иммунные клетки специально в лаборатории учат распознавать рак. Но здесь, как видим, можно добиться прицельной иммунной атаки без выяснения того, какие молекулярные особенности есть у того или иного вида опухоли и как эти особенности объяснить иммунным клеткам – иммунитет все уже для себя выяснил.

Стоит добавить, что сейчас уже идут клинические испытания нового средства с участием пятнадцати пациентов с лимфомными опухолями; если результаты будут обнадеживающими, очередь дойдет и до других видов рака. В случае сильно развившихся опухолей иммунитет их сам вряд ли сможет «съесть», и их все равно будет нужно удалять хирургическим путем.

Однако и в таких случаях средство для пробуждения иммунитета все равно пригодится: активированные еще до операции иммунные клетки, во-первых, уничтожат метастазы, которые наверняка успели разбрестись по организму, а во-вторых, они истребят те раковые клетки, которые могли остаться после операции.

ArefievPV

«Раздутый штат»: зачем генам столько руководителей
http://www.nkj.ru/news/33166/
Для очень важных генов в геноме припасено сразу несколько регуляторов – на случай непредвиденных ситуаций.

Наши гены работают с разной активностью, иногда слабее, иногда сильнее, в зависимости от условий среды и внутренних потребностей клетки. Но сами себя гены регулировать не могут, и поэтому в ДНК есть еще специальные регуляторные участки – особые последовательности нуклеотидов, которые не кодируют никаких белков, но влияют на активность генов. Такие регуляторные участки бывают разных видов, и достаточно большая их группа получила название энхансеров («усилителей»).

Однако не стоит думать, что одному гену соответствует один регулятор-энхансер. Биологи уже давно выяснили, что очень часто один и тот же ген подчиняется нескольким энхансерам. Но почему их много? Можно предположить, что мы имеем дело просто с избытком регуляторных элементов, которые копируют функции друг друга – но так ли оно на самом деле?

Все выглядит загадочно еще и потому, что энхансеры нередко оказываются исключительно консервативны с точки зрения эволюции: то есть один и тот же энхансер будет почти одинаковым у человека и у мыши, и таких у нас с мышами можно насчитать несколько сотен. Это значит, что они оставались неизменным почти 80 млн лет, с тех пор, как по Земле ходил общий предок приматов и грызунов. А если какой-то участок в ДНК остается так долго неизменным, то он, следовательно, крайне важен. Получается парадоксальная ситуация – абсолютно необходимый избыток регуляции: если взять и отключить один из якобы избыточных элементов, последствия для организма должны быть катастрофическими.

Исследователи из Национальной лаборатории имени Лоуренса в Беркли вместе с коллегами из других научных центров именно так и поступили: по очереди выключали у мышей четыре очень консервативных энхансера, контролирующих развитие мозга. На мышах, однако, это никак не сказалось – по крайней мере, внешне животные выглядели вполне здоровыми. Но, может быть, изменения у мышей на самом деле были, просто их трудно заметить? И, возможно, чтобы увидеть значительные изменения, нужно отключать энхансеры не поштучно, а пачками?

В следующем эксперименте в качестве мишени выбрали четыре энхансера, регулирующих активность гена Arx – про него известно, что он необходим как мышам, так и людям для нормального развития мозга и половой системы. Энхансеры удаляли и поодиночке, и попарно, но, как говорится в статье в Cell, мыши опять получились вполне нормальными, здоровыми и плодовитыми. Тем не менее, когда мозг животных рассмотрели более детально, то нашли явные изменения: при поштучном выключении регуляторных элементов в одном случае у мышей появлялись дефекты в гиппокампе, в другом случае у них оказывалось сравнительно мало нейронов, использующих в качестве нейромедиатора ацетилхолин.

Очевидно, и то, и другое должно было бы сказаться на поведении животных (гиппокамп, как мы знаем, один из главных центров памяти). Кстати говоря, такие же изменения в мозге обнаруживают у людей с деменцией и эпилептическими расстройствами. Лабораторные мыши оставались внешне нормальными – однако лаборатория есть лаборатория, и, скорее всего, дефекты в развитии сыграли бы свою роль, если бы животные жили на воле.

Кроме очень консервативных, то есть очень похожих, энхансеров у нас с мышами около ста тысяч не очень консервативных, которые выполняют одинаковые функции, контролируют одинаковые гены, но при этом заметно отличаются друг от друга. В другой серии экспериментов исследователи занимались как раз такими, не очень консервативными регуляторными элементами. У мышей вырезали из ДНК по одному из десяти энхансеров, которым подчиняются гены, управляющие развитием конечностей. И опять-таки мыши оказались без видимых дефектов.

Но потом авторы работы обратили внимание на пару регуляторных элементов, которые во время формирования конечностей были активны в одно и то же время – и когда эту пару выключили сразу, дефекты не замедлили проявиться: у животных стали появляться лишние пальцы и изменилась длина костей. То есть оба энхансера явно копировали друг друга в работе.

В статье в Nature говорится, что регуляторная избыточность – обычное свойство генома, по крайней мере, у млекопитающих: гены, которые контролируют особо важные эпизоды эмбрионального развития, снабжены пятью и более регуляторами-энхансерами, которые работают в одно и то же время и в одном и том же месте. При всем при том анализ последовательностей показывает, что такие энхансеры более или менее консервативны, то есть изменения в них не приветствуются, и каждый из них должен работать, как работал всегда.

На самом деле то, что регуляция генов избыточна, не совсем новость. Но сейчас эту избыточность удалось показать в явном виде на примере энхансеров, участвующих в совершенно разных процессах. И одновременно удалось продемонстрировать, что регуляторные элементы вовсе не копируют друг друга один в один.

С одной стороны, каждый из них работает как запасной игрок: если кто-то выйдет из строя из-за мутации, его работу начнет выполнять второй, третий, четвертый и т. д.; чем важнее задача, которую выполняет ген, тем сильнее у него «страховка». С другой стороны, как было показано в экспериментах с «мозговыми» энхансерами, их функции перекрываются не полностью. Условия, в которых живем и мы, и мыши, и вообще все животные, чрезвычайно разнообразны, и дополнительные генетические регуляторы становятся важны именно в очень широком контексте, с огромным числом действующих факторов, которые не всегда можно учесть в экспериментальных условиях. 

С практической же точки зрения стоит сказать, что чем больше мы узнаем об избыточных энхансерах, тем лучше станем понимать, как бороться с разнообразными тяжелыми заболеваниями, которые, как мы знаем, тоже зависят от множества условий.

василий андреевич

Цитата: ArefievPV от февраля 05, 2018, 10:45:32регуляторная избыточность – обычное свойство генома
попробуйте их представить в качестве частиц-носителей физического поля.

ArefievPV

Цитата: ArefievPV от февраля 05, 2018, 10:45:32
«Раздутый штат»: зачем генам столько руководителей
http://www.nkj.ru/news/33166/
Для очень важных генов в геноме припасено сразу несколько регуляторов – на случай непредвиденных ситуаций.
В подаче "Элементов..."
Устойчивое развитие конечностей у мышей обеспечивается дублированием регуляторов
http://elementy.ru/novosti_nauki/433198/Ustoychivoe_razvitie_konechnostey_u_myshey_obespechivaetsya_dublirovaniem_regulyatorov
ЦитироватьПроанализировав эти данные, авторы пришли к заключению, что, во-первых, множественные энхансеры характерны для большинства генов, управляющих развитием эмбриона, во-вторых, дублирование функций с большой вероятностью характерно для значительной доли энхансеров, регулирующих экспрессию этих генов.

По-видимому, помехоустойчивость развития чрезвычайно важна для млекопитающих (а может, и вообще для всех многоклеточных), и поэтому дополнительные регуляторные элементы, кажущиеся на первый взгляд избыточными, поддерживаются отбором, что и объясняет их эволюционную консервативность.

ArefievPV

Предложен механизм формирования тактильной иллюзии Вебера
http://elementy.ru/novosti_nauki/433199/Predlozhen_mekhanizm_formirovaniya_taktilnoy_illyuzii_Vebera

Иллюзии могут пугать или завораживать, особенно когда мы мало знаем о причинах их возникновения. Ученые-когнитивисты из Лондона детально изучили основу одной из тактильных иллюзий, состоящей в том, что расстояние между равноудаленными точками на коже ощущается по-разному в зависимости от расположения этих точек на теле. Их теория объясняет эту иллюзию так: мозг оценивает расстояние по тактильным ощущениям посредством подсчета рецептивных полей, которые пересекает отрезок, соединяющий две точки прикосновения.

P.S. Статья не только про тактильные иллюзии... Типа, маленьний обзор...

Micr

Официально признанные источники хороших научных новостей:

https://indicator.ru/news/2018/02/06/za-vernost-nauke-2017/

ArefievPV

Первое существо, научившееся ходить, могло никогда не выйти из воды
https://www.popmech.ru/science/news-409602-pervoe-sushchestvo-nauchivsheesya-hodit-moglo-nikogda-ne-vyyti-iz-vody/

Конечности, отличные от плавников, могли развиться у обитателей моря задолго до выхода на сушу. В пользу этого предположения свидетельствует анализ РНК одного из самых примитивных позвоночных, ежового ската, проведенный биологами из школы медицины университета Нью-Йорка.

«Принято считать, что способность ходить (или ползать с помощью конечностей) появилась после выхода на сушу. Однако мы, к своему удивлению, обнаружили, что это могли делать некоторые рыбы. Нейронная и генетическая машинерия, позволившая им отрастить конечности, была почти идентична той, что пользуются позвоночные, в том числе и люди», — рассказывает Джереми Дассен (Jeremy Dasen), один из авторов исследования. Статья опубликована в журнале Cell.

Ученые изучили развитие мозга ежового ската (Leucoraja erinacea) - одного из самых примитивных позвоночных, которое немногим отличается от своих предков, живших сотни миллионов лет назад. У ежовых скатов по две пары плавников: большие грудные и маленькие брюшные. Первыми они пользуются, чтобы плавать, вторыми — чтобы ходить по дну, причем движение брюшных плавников напоминает движение лап наземных позвоночных: скаты выставляют попеременно то правый, то левый плавник.

Ученые секвенировали РНК скатов, чтобы узнать, какие гены экспрессируются у рыб в части мозга, ответственной за движение. Оказалось, что многие гены, работающие у наземных позвоночных, активны и у ската. Более того, оказалось, что нервные клетки определенных типов, которые играют ключевую роль в управлении мышцами, выпрямляющими и сгибающими конечности у высших позвоночных, присутствуют и у скатов. «Наши открытия позволяют предположить, что генетическая «программа», определяющая способность двигательных нейронов управлять движениями конечностей при ходьбе, появилась на миллионы лет раньше. чем мы полагали», — поясняет Дасен.

Древними оказались не только двигательные нейроны, но и вставочные нейроны, соединяющие двигательные с остальной нервной системой. Вставочные нейроны формируют нейросеть, способную регулировать опорно-двигательный аппарат без прямой связи с мозгом (такие нейросети называются центральными генераторами упорядоченной активности, ЦГУА). У скатов обнаружилась ЦГУА, очень похожая на те, что управляют движениями конечностей у наземных позвоночных.

ArefievPV

Серые крысы способны действовать по принципу «услуга за услугу»
http://elementy.ru/novosti_nauki/433202/Serye_krysy_sposobny_deystvovat_po_printsipu_usluga_za_uslugu

Долгое время способность к обмену несовпадающими услугами считали присущей только обезьянам. Однако этологи из Швейцарии показали, что принцип «услуга за услугу» могут использовать и грызуны — серые крысы (Rattus norvegicus). Это первая экспериментальная демонстрация того, как животные, не относящиеся к отряду приматов, обеспечивают друг друга одним ресурсом в обмен на другой. Вероятно, такой взаимный (реципрокный) альтруизм более распространён в природе, чем считалось ранее.

Micr

Сообразительность ворон зависит от размера группы

http://elementy.ru/novosti_nauki/433201/Soobrazitelnost_voron_zavisit_ot_razmera_gruppy

У социальных австралийских ворон-свистунов (Gymnorhina tibicen) обнаружена положительная корреляция между размером группы и умственными способностями: птицы из больших коллективов в среднем быстрее справляются с разнообразными задачами на сообразительность. При этом успешность решения задач разных типов скоррелирована, что позволяет говорить о неком «общем интеллекте», который повышается у птиц в больших коллективах. Кроме того, обнаружена положительная корреляция между когнитивными способностями самок и их репродуктивным успехом (числом выращенных птенцов). Результаты согласуются с идеей о том, что социальность способствует развитию интеллекта.

Micr

Полуфабрикаты могут стать причиной возникновения рака

https://naked-science.ru/article/sci/polufabrikaty-mogut-stat-prichinoy

Французские ученые установили связь между продуктами высокой степени обработки и риском возникновения онкологических заболеваний.

Micr

Муравьи оказались способны лечить раненых собратьев

https://naked-science.ru/article/sci/muravi-okazalis-sposobny-lechit

Ученые впервые наблюдали работу «муравьиных санитаров», которые лечат и возвращают в строй раненых и потерявших конечности солдат.

Micr

У женщин, которые работают уборщицами или просто регулярно пользуются чистящими средствами в виде аэрозолей, состояние легких со временем ухудшается намного быстрее, чем у остальных представительниц прекрасного пола. Удивительно, но у мужчин подобного эффекта не нашли. Статья с обоснованием вывода опубликована в American Journal of Respiratory and Critical Care Medicine.

https://indicator.ru/news/2018/02/16/uborka-portit-legkie-zhenshin/

ArefievPV

Человеческие гены работают после смерти
https://www.nkj.ru/news/33231/

Сравнение посмертной генетической активности в разных тканях тела позволяет с большой точностью определить время смерти.

То, что наши гены могут работать после смерти, кажется парадоксом, однако, если подумать, никакого парадокса тут нет. Как мы знаем, генетическая информация реализуется в два этапа: сначала с гена, то есть с ДНК, копируются молекулы РНК – этап транскрипции, а потом на молекулах РНК синтезируются молекулы белка – этап трансляции. (Там есть и другие этапы, но погружаться в детали мы сейчас не будем.)

И когда мы говорим, что ген активен, что ген работает, то имеем в виду, что на нем синтезируются РНК. Для этого нужны ферменты и ресурсы: строительные низкомолекулярные соединения и энергия, тоже в виде небольших энергетических молекул. И даже если орган мертв, в его клетках все равно остаются до поры до времени и вполне работающие ферменты, и энергетические молекулы, и строительные блоки.

На самом деле для специалистов по криминалистике это не новость – про посмертную генетическую активность они знают давно. Но какие именно гены работают после смерти, в каких органах и тканях? И как долго?

Год назад в журнале Open Biology появилась статья, в которой говорилось, что у мышей и рыб после смерти функционируют около тысячи генов, причем у рыб некоторые из них продолжали работать еще целых четыре дня.

Нечто подобное происходит и у людей. Сотрудники Университета Порту и Центра геномных исследований при Научно-технологическом институте Барселоны вместе с коллегами из других научных центров Испании, Бразилии, России и США проанализировали активность генов в человеческих тканях, взятых более чем у пятисот покойников в течение 29 часов после смерти.

Авторы работы пишут в Nature Communications, что в разных тканях число генов работающих генов было разным: где-то (например, в селезенке и коре мозга) таких вообще не было, а где-то (например, в скелетных мышцах и поперечной ободочной кишке) число «посмертных» генов достигало пятисот-шестисот.

Но смысл исследования был не только в том, чтобы посчитать, сколько генов человека работают после того, как он умер. Известно, что в криминалистике крайне важно определить время смерти, и специалисты ищут способы, которые работали бы здесь с большей точностью, чем обычное измерение температуры и степени трупного окоченения. И «посмертные» гены тут могут быть очень кстати: оказалось, что по генетической активности в клетках подкожного жира, легких, щитовидной железы и верхних слоев кожи можно определить время смерти с точностью до девяти минут.

Правда, у такого метода есть некоторые минусы: во-первых, лучше всего он работает в первые часы после смерти, а во-вторых, реальные условия, в которых приходится работать криминалистам, могут сказываться на точности, да и сама по себе процедура измерения активности генов по специфическим РНК не так уж проста.

Скорее всего, генетический алгоритм, если он войдет в криминалистическую практику, будут использовать вместе с другими способами: например, бактериальная микрофлора у мертвого тела меняется сравнительно медленно, и, если время смерти не успели определить по генам, его можно определить по бактериям.