Интересные новости и комментарии

Автор Дж. Тайсаев, января 15, 2009, 02:31:37

« назад - далее »

АrefievPV

Цианобактерии превратили в заводы для биопластика
https://www.popmech.ru/science/news-668503-cianobakterii-prevratili-v-zavody-dlya-bioplastika/?from=main_middle
ЦитироватьИсследователи из Тюбингенского университета впервые смогли изменить метаболизм цианобактерий так, чтобы они могли производить биопластик в промышленных масштабах.

Цианобактерии могут создавать пластик в качестве побочного продукта своей жизнедеятельности. Как оказалось, обычно эти микроорганизмы ограничивают производство биопластика. Но ученые нашли способ снять эту блокировку и превратить эти создания в настоящие «биологические заводы»

Сегодня ежегодно производится около 370 миллионов тонн пластмасс. Согласно прогнозам, в следующем десятилетии мировое производство этих материалов увеличится еще на 40%. С одной стороны, пластик недорогой и может использоваться во множестве областей. С другой стороны, пластик плохо перерабатывается и является причиной увеличения количества отходов и смертей животных.

Решить эти проблемы может помочь штамм цианобактерий с удивительными свойствами. Цианобактерии рода Synechocystis продуцируют полигидроксибутират (ПГБ) — один из видов биопластика. ПГБ можно использовать как замену полипропилену, но в отличие от своего «собрата» этот материал быстро разлагается в окружающей среде. Но до сих пор получать такой биопластик в промышленных масштабах было невозможно: бактерии вырабатывают целевое вещество в очень небольших количествах.

Ученые из Тюбингенского университета смогли найти у бактерий систему контроля, которая ограничивает поступающий в клетку поток углеродсодержащих соединений, из которых синтезируется ПГБ. После удаления соответствующего регулятора и нескольких генетических изменений количество биопластика, продуцируемого бактериями, сильно выросло и в конечном итоге составило более 80% от общей массы клетки.

Поскольку цианобактерии нуждаются только в воде, CO2 и солнечном свете, исследователи считают, что эти микроорганизмы являются идеальными кандидатами для устойчивого производства полигидроксибутирата в промышленных масштабах.

Исследование опубликовано в журнале Proceedings of the National Academy of Sciences.

АrefievPV

Сложная ложь заставила лжецов активнее имитировать движения собеседников
https://nplus1.ru/news/2021/02/03/a-liar-and-a-copycat
ЦитироватьНидерландские ученые показали, что, чем больше когнитивных ресурсов лжец должен потратить на создание лжи, тем меньше контроля он может уделять своему невербальному поведению, в частности, отслеживанию непроизвольной синхронизации движений туловища, рук и головы с движениями собеседника. Также и собеседник более чем в половине случаев распознает ту ложь, которая требует больше когнитивных усилий, в то время как они же определяли только 15-30 процентов сокрытий правды. Статья опубликована в журнале Royal Society Open Science.

АrefievPV

Древние рыбы заранее подготовились к выходу на сушу

https://www.nkj.ru/news/40705/

ЦитироватьГены, помогающие современным древним рыбам дышать воздухом, похожи на гены, которые помогают формироваться нашим лёгким.

Наземные позвоночные произошли от рыб, которые решили выйти на сушу примерно 370 млн лет назад. Что нужно рыбе, чтобы так радикально сменить место жительства? Много чего нужно, для начала – лёгкие, чтобы дышать, и ноги, чтобы двигаться – дышать жабрами и ходить на плавниках на суше невозможно. Это довольно серьёзные изменения, и рыбы к ним подготовились сильно загодя.

Самих древних рыб мы изучить не можем. Зато сейчас у нас есть несколько групп рыб, которые очень похожи на тех древних. С одной стороны, это лопастепёрые рыбы – знаменитые латимерии и двоякодышащие. У них грудные плавники напоминают лапы, а двоякодышащие вообще дышат лёгкими, которые отходят от пищевода.

С другой стороны, у нас есть осетрообразные, многопёры и ильная рыба. Многопёры в чём-то схожи с двоякодышащими: у грудных плавников есть мясистая лопасть, делающая их похожими на прото-лапу, и дышат они не только жабрами, но и плавательным пузырём, подобным лёгкому. Ильная рыба, или амия – тоже живое ископаемое, способное дышать атмосферным воздухом с помощью пузыря-лёгкого.

Многопёры, осетры, ильная рыба относятся к очень большому классу Лучепёрых рыб. Лучепёрые – это и знакомые нам сельдь, скумбрия, карп, лосось, и глубоководные удильщики, и луны-рыбы – в общем, подавляющее большинство рыб, живущих на свете. Но все они эволюционно моложе, чем вышеупомянутые многопёры с осетрами. (Для полноты картины можно вспомнить про акул и скатов, которые ещё более древние, чем осетры, латимерии и многопёры. Но акулы и скаты представляют собой вообще отдельную группу рыб, которые выйти на сушу никогда не помышляли.)

Сотрудники Института гидробиологии Китайской академии наук, Института палеонтологии позвоночных и палеоантропологии Китайской академии наук и других научных центров проанализировали гены нескольких древних лучепёрых рыб – многопёра, ильной рыбы и других, чтобы в результате охватить все основные линии развития лучепёрых рыб. В статье в Cell говорится, что гены, которые дают древним рыбам своеобразный грудной плавник и плавательный пузырь, который работает как лёгкие, похожи на гены, которые выполняют ту же работу в нашем организме.

Например, у людей в ДНК есть участки, от которого зависит формирование подвижных суставов (локтевого, коленного и др.). И у многопёра бишира есть похожие участки ДНК, которые помогают сформировать подвижное сочленение между одним из хрящей плавника и его радиальными лучами. То же самое касается генетической информации, связанной с нашими лёгкими и дыхательными пузырями древних рыб.

При этом любопытно, что большинство современных рыб утратило информацию, необходимую для формирования подвижного сустава в плавнике. А вот гены, управляющие формированием плавательного пузыря, остались. Но только у более эволюционно молодых рыб они стали работать иначе: дыхательная функция у пузыря исчезла, рыбы стали дышать только жабрами, пузырь остался  только для плавучести. То есть получается, что это не лёгкие наземных животных образовались из пузыря, а пузырь карпов, сельдей, окуней и т. д. сформировался из «прото-лёгкого» – гибридного органа, который помогал и дышать, и плавать. Так что когда рыбы стали выходит на сушу, появление лёгких означало в эволюционно-генетическом смысле «возвращение к корням».

Самое важное, что древние лучепёрые рыбы появились около 420 млн лет назад, то есть за 50 млн лет до выхода рыб на сушу. Скорее всего, те, кто выходил на сушу, были похожи на кого-нибудь вроде многопёра. Им не нужно было ждать каких-то новых генетических изменений, которые должны были возникнуть с нуля: в геноме была информация и для подвижных суставов в конечностях, и для формирования лёгких. Конечно, лёгкие и конечности требовалось довести до ума, но, так или иначе, какой-то генетический черновик для этого уже был.

Такие заготовки на самом деле не редкость в эволюции. Например, известно, что у примитивных позвоночных во время эмбрионального развития гены работают так, как если бы их мозг был намного сложнее, чем он есть на самом деле – то есть у них есть генетические чертежи, которые по ходу эволюции позволят сделать намного более сложный мозг. Другой пример – несколько лет назад мы писали, что у некоторых одноклеточных организмов есть прототип молекулярного «пульта управления», с помощью которого многоклеточные управляют своими клетками.

P.S. Ссылки на информацию, о которой упоминается в заметке:

Мозг позвоночных формируется по заранее созданным чертежам
https://www.nkj.ru/news/24918/
У примитивных позвоночных во время эмбрионального развития гены работают так, как если бы их мозг был намного сложнее, чем он есть на самом деле.

Как многоклеточные научились управлять своими клетками
https://www.nkj.ru/news/29765/
Прототип молекулярного «пульта управления», с помощью которого многоклеточные управляют своими клетками, есть и у некоторых одноклеточных.

Alexeyy


василий андреевич

Цитата: АrefievPV от февраля 08, 2021, 17:24:57Цитата: от рыб, которые решили выйти на сушу
Заметок, в которых пишут о "решениях рыб" лучше не читать, а только пробежать глазами.

АrefievPV

Грибы жили на суше уже 635 миллионов лет назад
https://elementy.ru/novosti_nauki/433767/Griby_zhili_na_sushe_uzhe_635_millionov_let_nazad
ЦитироватьКитайские палеонтологи описали нитчатые микрофоссилии возрастом 635 млн лет, найденные в формации Доушаньтуо. Морфологические признаки этих нитчатых организмов указывают на то, что это грибы со спорами, скорее всего, зигомицеты. Но важнее даже не столько таксономическое положение этих грибов, сколько их местообитание. Опираясь на минералогию образцов и их расположение в древних карстовых полостях и трещинах, авторы делают вывод об их наземной, а не морской природе. А это означает, что в раннеэдиакарское время грибы уже освоили сушу, и вместе с бактериями и водорослями составляли наземный биоценоз. Прежде считалось, что грибы появились на суше примерно 470 млн лет назад.
ЦитироватьНаших читателей такой «молодой» возраст, вероятно, разочарует, потому что уже известны грибы гораздо более древние, населявшие планету более 1 млрд лет назад (см. Ископаемые грибы возрастом миллиард лет близки к точке расхождения грибов и животных, «Элементы», 22.05.2019). В чем же тогда наш интерес? А в том, что новые ископаемые грибы жили не в море, а на суше. А это значит, что 635 млн лет назад суша уже была заселена грибами: водоросли, бактерии, одноклеточные эукариоты на ней уже обитали, а теперь выясняется, что вместе со всей этой микробратией сосуществовали и грибы.
Цитироватьавторы, дав волю воображению, широкой кистью рисуют интересную картину раннеэдиакарских эволюционных событий в жизни нашей планеты. 635–600 млн лет назад суша начинает активно заселяться, за счет биоэрозии сильно ускоряется терригенный снос, в результате морские воды обогащаются органикой и необходимыми химическими элементами, что в свою очередь благоприятствует развитию фитопланктона... В ископаемой летописи появляются первые губки, а через 20 млн лет за ними подтягиваются и эдиакарские фрактофузусы (см. Fractofusus и новость У эдиакарских организмов фрактофузусов выявлено два способа размножения, «Элементы», 11.08.2015) со своими непонятными перистыми родичами рангеоморфами (см. Rangeomorph). Зеленые растения появятся на планете еще не скоро, через 100 млн лет (напомню, что наземная флора появилась на суше около 530 млн лет назад, см. P. K. Strother, 2016. Systematics and evolutionary significance of some new cryptospores from the Cambrian of eastern Tennessee, USA). Но микоризообразующие грибы уже будут ждать, чтобы помочь новым колонизаторам усваивать элементы из почвы.

Но для того, чтобы более уверенно определить степень влияния наземной биоты на события в море в те древние времена, нужно гораздо больше находок наземной биоты, нужны расчеты терригенного сноса, нужны изотопные данные по наземной органике и побольше надежных данных о почвах того периода. Так что обсуждать обрисованные авторами работы события пока преждевременно. Но факт в копилку наших знаний уже положен: грибы заселили сушу не позже 635 млн лет. А, может быть, еще раньше?
P.S. Ссылки в дополнение:

Грибы, которым миллиард лет
https://elementy.ru/novosti_nauki/430948/Griby_kotorym_milliard_let

Ископаемые грибы возрастом миллиард лет близки к точке расхождения грибов и животных
https://elementy.ru/novosti_nauki/433481/Iskopaemye_griby_vozrastom_milliard_let_blizki_k_tochke_raskhozhdeniya_gribov_i_zhivotnykh

Alexeyy

Здорово! В 2013 году уже было серьёзно обосновваннное предположение, что уже тогда могла существовать сложная сухопуктная жизнь даже с многоклеточными животными (https://elementy.ru/novosti_nauki/431967). А теперь, получается, что грибы на суше в то время - монета в капилку этого предположения.

АrefievPV

Происхождение человечества в свете новых данных палеоантропологии и генетики
https://elementy.ru/novosti_nauki/433769/Proiskhozhdenie_chelovechestva_v_svete_novykh_dannykh_paleoantropologii_i_genetiki
ЦитироватьКоллектив ведущих генетиков и палеоантропологов из Великобритании и Германии опубликовал обзор новейших данных, проливающих свет на генетическую историю человечества. Авторы выделяют в формировании современного человеческого генофонда три ключевых этапа, по каждому из которых много данных, но мало окончательных ответов. Первый этап — сложная история обособления предков сапиенсов от неандертальцев и денисовцев (1,0–0,3 млн лет назад), второй — формирование генетического разнообразия сапиенсов в Африке (300–60 тысяч лет назад), третий — широкое расселение сапиенсов в Евразии и Австралии и последние контакты с другими видами людей, такими как неандертальцы и денисовцы (60–40 тысяч лет назад). Ни на одном из этих этапов генетические истоки современного человечества не удается привязать к какой-то конкретной «колыбели», например, к тому или иному региону в пределах Африки. Имеющиеся данные пока совместимы не с одним, а с несколькими альтернативными эволюционными сценариями.

АrefievPV

Кабельные бактерии подышали кислородом за себя и за остальную колонию
https://nplus1.ru/news/2021/02/15/electrobacteria-champion
ЦитироватьМикробиологи зафиксировали интересную адаптацию к окислительному стрессу в кабельных бактериях. Оказалось, что небольшая часть нитчатой колонии, наиболее приближенная к источнику кислорода, с удивительно высокой интенсивностью использует его для энергетически выгодного аэробного дыхания. Остальная же часть находится в анаэробной среде, избегая проблем, вызываемых окислительным стрессом. Статья опубликована в Science Advances.

С тех пор как в результате Кислородной катастрофы (2,4-2,0 миллиарда лет назад) в атмосфере появился молекулярный кислород, живые существа стали подвергаться окислительному стрессу. Какие-то микроорганизмы учились справляться с активными формами кислорода внутри клеток, а другие (в том числе и появляющиеся эукариоты) стали извлекать из него пользу, используя кислород как акцептор электронов.

Сейчас в условиях сильной гипоксии (крайне низкой концентрации кислорода) обитают микроорганизмы, населяющие влажные среды обитания: в донных осадках, биопленках или кишечнике животных. В ходе эволюции эти микробы разработали различные механизмы, которые позволяют им жить на границе кислородной и бескислородной среды. Интересной тактикой пользуются морские «кабельные» бактерии из семейства Desulfobulbaceae: их колонии формируют длинные (до нескольких сантиметров) нити-кабели, на всю длину которых протягивается пока еще неизвестный исследователям проводящий электричество материал. Эти нити-колонии протягиваются из бескислородной среды, откуда бактерии получают сульфидные соединения (доноры электронов) в кислородную (где есть молекулярный кислород, акцептор электронов). Таким образом, процесс клеточного дыхания в колониях разбит на две части и разнесен в разные части нитей.
ЦитироватьК удивлению биологов, кабельные бактерии (те из них, которые пересекли границу и попали в кислородную среду) продемонстрировали очень высокие показатели потребления кислорода: 2200 наномоль молекулярного кислорода на миллиграмм белка в минуту. Для сравнения, предыдущий рекорд среди прокариот принадлежал бактерии Desulfovibrio termitidis с показателем 1570 наномоль молекулярного кислорода на миллиграмм белка в минуту. При этом сам механизм клеточного дыхания у кабельных бактерий еще только предстоит объяснить.

Попавшая в кислородную среду часть нитей составила меньшую долю колонии: всего 8,1±6,4 процента от всей ее биомассы. Таким образом, всего несколько клеток были ответственными за весь кислородный обмен колонии. Самые крайние клетки всегда старались держаться в среде с меньше чем 14 процентами насыщения воздухом. Чтобы достичь этого, вся колония меняла свое положение в ответ на небольшие изменения концентрации воздуха каждые 60 секунд. Возможно, сигнал между клетками передается путем изменения электрического напряжения нитей.

Через какое-то время ученые наблюдали необратимые изменения в клетках колоний, подвергнутых воздействию кислорода. Ученые предположили, что даже если клетки на конце нитей из-за воздействия кислорода умирают, то с эволюционной точки зрения такая стратегия все же выгодна: около 90 процентов колонии находится в среде с крайне низким содержанием кислорода, не рискуя попасть под разрушительное воздействие его активных форм. Такой подход стал примером интересной адаптации кабельных бактерий: их колонии одновременно используют мощный акцептор электронов (кислород) и достаточно эффективно избегают минусы пребывания в кислородной среде.
P.S. Адаптация выгодна именно колонии, а не отдельной бактерии.

Замечание в сторону.

Полагаю, что и сама клеточность, оформившаяся, как некая адаптация к недружественной среде, возникла в протоколонии из протоклеток (в некоем прообразе будущего микробного сообщества).

Придерживаюсь мнения, что одноклеточные эволюционируют (и эволюционировали) в форме колонии (в форме микробного сообщества), а не поодиночке. То есть, постоянно шла коэволюция множества популяций микроорганизмов (включая вирусы).

Evol

Популярный материал в тему Вашего мнения, уважаемый АrefievPV, см., пожалуйста, https://tass.ru/sci/6816097.


АrefievPV

Одни рецепторы к ацетилхолину помогают дрозофилам спать, другие — просыпаться
https://elementy.ru/novosti_nauki/433770/Odni_retseptory_k_atsetilkholinu_pomogayut_drozofilam_spat_drugie_prosypatsya
ЦитироватьДействие нейромедиатора во многом зависит от того, с какими рецепторами каких клеток он связался. Это означает, что одно и то же сигнальное вещество в разных случаях может давать совершенно разные, даже противоположные эффекты. К примеру, ацетилхолин и у млекопитающих, и у насекомых способствует и сну, и пробуждению. Как выяснили китайские ученые в одном из недавних исследований, плодовым мушкам дрозофилам просыпаться от действия внешних стимулов помогают никотиновые ацетилхолиновые рецепторы, содержащие α3-субъединицы, а спать — рецепторы с субъединицами α2 и β2 в составе. Они расположены на разных нейронах (дофаминовых и октопаминовых соответственно), входящих в состав разных цепочек нервных связей.
ЦитироватьН- и м-холинорецепторы отличаются по строению (рис. 2). Первые представляют собой ионные каналы, молекулярные ворота, через которые в клетку (или из клетки, в зависимости от концентраций различных частиц внутри и снаружи нее) проходят ионы — заряженные частицы. В данном случае ворота открываются, если к рецептору присоединяется ацетилхолин. Вторые ничего через себя не пропускают, а сигнал о присоединении ацетилхолина передают так называемым G-белкам, расположенным с внутренней стороны мембраны, и уже они запускают цепочку реакций, которая приводит к открытию ионных каналов. В обоих случаях связывание нейромедиатора с рецептором меняет форму последнего, и именно это обстоятельство обеспечивает передачу сигнала.

Рис. 2. Схема обобщенных никотинового и мускаринового ацетилхолиновых рецепторов. α, β, γ — молекулы-субъединицы в составе G-белка. АцХ — сокращенное обозначение ацетилхолина (показан черными кружочками). Изображение из статьи E. Proulx et al., 2013. Nicotinic acetylcholine receptors in attention circuitry: the role of layer VI neurons of prefrontal cortex

М-холинорецептор — это единая молекула, у дрозофил встречается три их разновидности: A, B, C. Н-холинорецептор состоит из пяти субъединиц, названия которых складываются из буквы греческого алфавита и цифры. У плодовых мушек 10 вариантов таких субъединиц: α1 — α7, β1 — β3. Один н-холинорецептор может состоять из субъединиц одного вида, а может и из разных. Точно известно, что в один рецептор способны одновременно входить α1, α2 и β2. Почти наверняка холинорецепторы разного состава оказывают разное влияние на поведение дрозофил (других животных тоже, но сейчас речь в первую очередь об этих насекомых).

АrefievPV

Биологи обнаружили орган проприорецепции в спинном мозге данио-рерио
https://nplus1.ru/news/2021/02/16/danio-rerio-spinal
ЦитироватьУ рыбок Danio rerio в спинном мозге обнаружили сенсорные нейроны, которые работают как датчик мышечной чувствительности — проприорецепции. Найденные нейроны оказались механочувствительными и возбуждались в ответ на изгиб тела рыбок при передвижении. В соответствии с этими сигналами нейроны также посылали тормозили нервные клетки моторных путей, чтобы регулировать движение животных. Орган мышечной чувствительности впервые обнаружен в центральной нервной системе, а не на периферии. Исследование опубликовано в журнале Neuron.

АrefievPV

Подо льдом на антарктическом шельфе процветает жизнь
https://elementy.ru/novosti_nauki/433771/Podo_ldom_na_antarkticheskom_shelfe_protsvetaet_zhizn
ЦитироватьВ ходе экспедиции в антарктическом море Уэделла ученые исследовали морское дно под шельфовым ледником Фильхнера. К их удивлению, видеокамера, опущенная в пробуренную через толщу льда скважину на расстоянии 260 км от кромки ледника, засняла отдельно лежащий валун, покрытый биообрастаниями: на видео удалось разглядеть несколько видов губок (обычных и на длинных стебельках), а также другие стебельчатые и нитчатые организмы — как мелкие, так и крупные. Ученые подчеркивают, что на таком далеком расстоянии от кромки ледника прикрепленные донные формы жизни зарегистрированы впервые. Это означает, что здесь достаточно органики в том или ином виде для питания многоклеточных животных и поддержания комплекса обрастателей. Считалось, что на больших афотических глубинах подо льдом в условиях ничтожного привноса органики от ледовой кромки донная жизнь должна сходить на нет. Прежние исследования вкупе с исключительной скудостью данных подтверждали эту гипотезу. Однако дело, по-видимому, не столько в низком содержании органического вещества, сколько в отсутствии удобных мест для поселения.
Цитировать

Антарктические шельфовые ледники (показаны голубым цветом). Кружочками отмечены места бурения ледника и его результаты: в скважинах, изображенных черными кружочками, были найдены многоклеточные формы жизни, в скважинах, изображенных белыми кружочками, многоклеточной жизни не найдено. Звездочкой указана скважина в шельфовом леднике Фильхнера, из которой получены новые данные о донных подледных обитателях. Рисунок из обсуждаемой статьи в Frontiers in Marine Science
ЦитироватьВалун находится на расстоянии около 270 км от внешнего (океанического) края ледника. Чтобы до него добраться, нужно было пробурить 872 метров ледяной толщи и спуститься еще на 472 метров вниз ко дну моря Уэддела. Там царит полная темнота, а вода имеет соленость, близкую к средней для Мирового океана (34,61‰), и минусовую температуру (−2,2°C). Было зарегистрировано довольно сильное течение, направленное от материка к кромке ледового покрытия, а не наоборот. И в этих условиях, как видно на видео, на валуне процветает жизнь. Население камня насчитывает 38 относительно крупных животных и бессчетное количество сантиметровой мелочи. А вокруг на илистом дне пусто: ни червей, ни рачков, ни даже следов ползанья.
ЦитироватьТеперь о колоссальных подледных площадях морского дна нельзя сказать, что они безжизненные. «Макрожизнь» в глубине подо льдом присутствует, где только для нее найдется подходящее место для поселения и источник питания. На этих пространствах валуны и камни, попавшие на дно из подтаявших плавучих льдов (так называемые дропстоуны), оказываются прекрасным субстратом для образования локальных биоценозов.

АrefievPV

У лемуров собственная верность
https://www.nkj.ru/news/40767/
ЦитироватьСудя по нейрохимии мозга лемуров, любовь и верность брачному партнёру возникают у них иначе, чем у других зверей.

Брачные отношения людей могут выглядеть очень по-разному в зависимости от культуры. Но с биологической точки зрения принято считать, что люди склонны выбирать брачного партнёра на всю жизнь, ну или на очень долгое время, по крайней мере. Среди млекопитающих есть и другие виды, у которых самец и самка хранят друг другу верность более-менее долго. (Хотя среди зверей таких немного, всего 3–5% видов, тогда как у птиц моногамов около 90%.) И когда исследователи хотят узнать нейробиологические механизмы моногамии, то в качестве модели берут какого-нибудь зверя, удобного в обращении, и экспериментируют с ним.

Очень многие эксперименты здесь ставят на желтобрюхих полёвках. Если сравнить с полигамными родственными видами, например с луговыми полёвками, то можно увидеть разницу в мозговой нейрохимии. Например, рецепторы к нейромедиаторам-гормонам окситоцину и вазопрессину у моногамных полёвок распределяются иначе, чем у полигамных. Во многом благодаря полёвкам окситоцин часто называют гормоном любви и верности. Хотя обычно в таких случаях говорят, что хотя грызуны и приматы относятся к млекопитающим, мозг у тех и у других всё же заметно отличается. И что результаты, полученные на грызунах, нужно с осторожностью распространять на приматов.

Сотрудники Университета Дьюка наглядно показали, что это не пустая оговорка. Исследователи сравнивали нейрохимию мозга у семи видов лемуров. Среди них были мангустовые и рыжебрюхие лемуры – моногамные виды, у которых самец и самка образуют пару на долгие года, вместе растя потомство и защищая территорию. Остальные пять видов были полигамными. Для экспериментов взяли животных, погибших по естественным причинам. У моногамных и полигамных лемуров сравнивали распределение в мозге рецепторов к вазопрессину и окситоцину – сравнивали не только между собой, но и с полёвками и с другими обезьянами.

Оказалось, что местонахождение и плотность этих рецепторов у лемуров отличается от того, что можно увидеть у полёвок и других приматов. То есть «нейромедиаторы любви и верности» действуют на другие нейронные цепи и нервные центры. Более того, отличия были даже между разными видами лемуров. То есть у них не было какой-то постоянной нейронной структуры, ответственной  за формирование брачной пары, которая была бы у моногамных видов и которой не было бы у полигамов. У полёвок такую нейронную структуру можно найти, а у лемуров – нет. Результаты исследований опубликованы в Scientific Reports.

Строго говоря, полученные данные сообщают только об особенностях распределения рецепторов к определённым нейромедиаторам. В перспективе авторы работы хотят поэкспериментировать с живыми лемурами, заблокировав у них окситоциновые рецепторы, чтобы посмотреть, что произойдёт с лемурьими «отношениями». Но уже сейчас можно сказать, что раз рецепторы распределяются так, как распределяются, то, вероятно, не стоит всю любовь и верность сводить к окситоцину-вазопрессину, и не стоит искать общее нейронное «брачное кольцо». Всё-таки брачное поведение довольно сложное. Было бы естественно, если бы оно опиралось на разные структуры, и если бы в мозге разных групп животных эта задача решалась по-разному.

И даже если подойти с другого края и присмотреться к одному только окситоцину: с одной стороны, есть эксперименты с людьми, когда он действительно усиливал эмоциональную привязанность к партнёру, с другой – тот же окситоцин вполне способен вызвать агрессию. Что лишний раз говорит о том, насколько в мозге всё непросто.