Гидрогеологическая система – колыбель жизни?

Автор ArefievPV, августа 28, 2017, 15:05:34

« назад - далее »

Питер

Когда  у  вас  три  аминокислоты,  все  наружу.
А  оно  вам  надо  ?

василий андреевич

  У нас тема про "колыбель жизни". Что невозможно в пробирке, но осуществилось в земном океане, без экзотических бульонов?
  Я знаю только один эволюционный (направленный) принцип - повышение энтропии. Синтез одного из двух, это понижение энтропии, при ее повышении в среде. Если тупо, то тепло должно остаться неизменным при падении температуры. А это означает точеное подведение энергии, производство реакции с ее поглощением, и непременным последующим отведением тепла в среду. Именно отведение тепла не позволит произойти обратной реакции распада.
  Есть ли такой подводяще-отводящий агент в океане, которого не удается воссоздать в пробирке? Что времени мало - отговорка, его по любому не хватит для случайного синтеза. Следовательно, синтез не случаен, но канализирован может быть только в сторону повышения энтропии (разумеется для условно изолированной системы).
  У нас вода, кругом вода. Вода растворяет и коагулирует, лишь бы не снижать свою энтропию. И это при чрезвычайно низких концентрациях примесных молекул. Потому я и ухватился за "правило исключенного объема", но не для сворачивания-разворачивания полимеров внутри глобулы, а для простейшего коагулята. Полимеризация в цитоплазме - другой вопрос. Там уже можно переходить к рассмотрению возбуждений, пробегающих вдоль молекулы и обустраивающих сложную стоячую волну на окончаниях.

АrefievPV

Продублирую ссылки:

Синтез пептида прошел на двух цепях РНК без участия рибосомы
https://nplus1.ru/news/2022/05/12/prebiotic-biosynthesis

Эффективный полимеразный рибозим подкрепил гипотезу мира РНК
https://nplus1.ru/news/2021/03/25/clamp-your-rna

АrefievPV

Жизнь из космоса. В метеоритах нашли все компоненты ДНК
https://ria.ru/20220514/meteority-1788267657.html

АrefievPV

Происхождение жизни. От РНК‑мира к белкам
http://trv-science.ru/2022/05/proisxozhdenie-zhizni-ot-rnk-mira-k-belkam/
Цитировать— Я понимаю начало происхождения жизни так. Появились какие-то структуры, которые умеют сами себя воспроизводить, но не точно, а с некоторыми отклонениями, и благоприятные отклонения запоминаются. Это и есть эволюция по Дарвину. Старт эволюции — начало жизни.
 
— Эти структуры в просторечии называют «репликаторы».
 
— По современным воззрениям, что такое первый репликатор и как он возник?
 
— Разных современных воззрений много. Кажется разумным, что первыми репликаторами были молекулы РНК. Первые этапы возникновения жизни целиком, конечно, в пробирке не реализованы, потому что времена не те, но по частям — реализованы. Сделаны молекулы РНК, которые способны к матричному синтезу, то есть к тому, чтобы скопировать другую молекулу РНК — это означает, что им можно подсунуть в качестве матрицы их самих.
 
— ДНК не способны себя копировать?
 
— ДНК не может вообще выполнять никаких каталитических функций. ДНК — штука довольно тупая. А РНК... Есть рибозимы, за открытие которых Том Чех в свое время получил Нобелевскую премию: это молекулы РНК, которые являются ферментами. Одна из возможных для них ферментативных активностей — это матричный синтез РНК. Соответственно, РНК-фермент читает РНК-матрицу и делает РНК-копию. Там есть тонкие фокусы с комплементарностью, но бог с ними. Принципиальная возможность существования РНК-репликаторов показана в пробирке.
 
Дальше: вроде бы смоделирована ситуация, когда из раствора того состава, который реалистичен для ранней Земли, и в условиях, которые реалистичны для ранней Земли, самопроизвольно возникают достаточно длинные молекулы РНК.
 
Однако имеется некоторый зазор. Мы пытаемся перепрыгнуть пропасть в несколько прыжков, и нам не хватает нескольких промежуточных уступов. Есть две проблемы. Первая проблема: те РНК, которые получаются самопроизвольно, более короткие, чем те, которые нужны для матричного синтеза. Вторая: матричный синтез такими рибозимами неточный. Да, с одной стороны, нам нужно, чтобы были изменения, чтобы они фиксировались, чтобы было над чем работать дарвиновскому отбору. С другой стороны — если ошибок слишком много, то у нас вся наследственность просто растворяется.
 
В предельном случае, если копирование происходит со стопроцентными ошибками, у нас нет никакого матричного синтеза, потому что не сохраняется память.
 
Есть красивое решение, которое тоже экспериментально реализовано. Оно состоит в следующем: нам не обязательно, чтобы рибозим был одной-единственной молекулой; мы можем собрать рибозим из более коротких частей. Так решаются обе проблемы. Во-первых, если он состоит из коротких фрагментов, мы можем их синтезировать по отдельности. Они потом сами соберутся за счет комплементарности между цепями.
 
Спирали РНК, за счет которых образуется пространственная структура, не обязаны образовываться в одной молекуле, они, вообще говоря, могут образоваться между разными молекулами. Во-вторых, решается катастрофа ошибок, потому что ошибки будут распределены по Пуассону, и если участки относительно короткие, то будут такие фрагменты, в которых ошибок нет или мало, а дальше нам рано или поздно повезет, и время от времени из них будут собираться такие рибозимы, в которых почти нет ошибок.
 
Дальше мы всё это умножаем на колоссальные времена и колоссальное количество попыток и получаем относительно правдоподобный сценарий возникновения первых репликаторов.
 
— Количественный вопрос. У Кунина была оценка возникновения полного репликатора, и получилось, что вероятность около 10–1000, причем всё равно, на что нормировать. Нормируем мы на один акт или на целую планету, там разница в десятки порядков всего, а не в тысячи. Как я понял, если этот процесс раздробить на несколько разных независимо работающих рибозимов...
 
— Нет. Рибозим один, но он состоит из нескольких частей, которые независимо синтезируются.
 
— Понятно. Тогда там оценки вероятности сильно плывут?
 
— Понятия не имею. У меня ощущение, что эти прикидки настолько отфонарные, что пусть ими физики занимаются, а не биологи. Я не понимаю, откуда берутся эти оценки. Вероятность создания самого первого репликатора из случайных наборов я оценивать не умею. Подозреваю, что никто не умеет, потому что непонятно, какие исходные данные брать, что на что умножать надо, чтобы получить эту оценку.
 
— У Кунина всё просто...
 
— Кунин много общается с физиками, его это испортило. И вы даже знаете этих физиков.
 
— Хорошо. Тем не менее оценка прямая и лобовая: имеем молекулу такой-то длины...
 
— Не канает по тривиальной причине: мы не знаем количество потенциальных молекул, которые были бы хороши. Вы можете оценить одну конкретную молекулу, но вы не знаете, какое количество молекул годится. Там несколько порядков тоже можно упустить.
 
— То есть нужно что-то радикальное?
 
— Еще раз: этого никто не знает. Я вижу принципиальную возможность, но я не умею оценивать времена. И, видимо, никто не умеет. Если у нас получается 10–1000, то всё остальное значения не имеет, потому что вы можете всю Вселенную напихать молекулами — и всё равно ничего не произойдет.
 
— Вселенная очень большая, очень.
 
— 101000 молекул там поместится?
 
— Поместится, не забывайте про мультиверс — вселенных бесконечно много.
 
— А на Земле?
 
— Нет, конечно. Там 1050, даже меньше, если речь о молекулах.
 
— Ну вот. Следует ли из этих оценок, что есть еще какой-то принципиальный шаг, которого мы не понимаем, я не знаю. Может быть, да; может быть, нет. Я не умею обращаться с такими числами. Как вы говорите, Вселенная большая. Дальше начинается всякая философия в виде антропного принципа, и мы можем заниматься не биологией, а философией сколько угодно.
 
— Я считаю, это плохой стиль — списывать всё на антропный принцип.
 
— Опять-таки: мы с Евгением Викторовичем [Куниным. — Ред.] об этом дискутировали. Списывать на антропный принцип — это, по-моему, интеллектуальная капитуляция.
 
— Именно это мы писали про энергию вакуума с Валерием Рубаковым... Едем дальше. Появился репликатор. Допустим, РНК. Но первая жизнь, которую мы видим, — это клетка. Путь от РНК до клетки простой или не очень?
 
Первая жизнь, которую мы видим, — это все-таки не клетка, а химический состав каких-то осадков, который трудно себе представить путем неорганического синтеза. Никаких клеток мы при этом не видим, насколько я понимаю. Вообще, я не специалист по этим вопросам.
 
По существующим моделям, репликаторы живут в каких-то глинистых породах, где имеются микрокомпартменты — попросту говоря, поры — вследствие геологической структуры породы, и это хорошо тем, что появляется понятие коллектива репликаторов, потому что они ограничены в пространстве и могут взаимодействовать друг с другом. Это довольно существенная вещь, потому что появляется разделение функций. Кто-то лучше делает одно, кто-то лучше делает другое, а из-за того, что они пространственно ограничены, они не растекаются, и функции, завязанные друг на друга, могут эволюционировать параллельно.
 
И дальше есть два принципиальных момента. Насколько я знаю, мы даже не очень понимаем, в каком порядке они следовали друг за другом хронологически. Во-первых, появление мембраны. Она улучшает компартментализацию, делает ее более надежной и дает возможность коллективам репликаторов размножаться, потому что из одной капельки, окруженной мембраной, могут появиться две. Во-вторых, переход от мира РНК к белковому миру.
 
Опять-таки, ДНК в этом смысле неинтересна, потому что это тупая молекула, чисто для хранения информации. Достоинство ДНК в том, что она более точно воспроизводится, поэтому как долговременная память она лучше, чем РНК. Мы это можем наблюдать прямо сейчас, потому что вирус SARS-COV-2, вызывающий ковид, мутирует очень быстро именно потому, что он РНКовый. Есть теория Кунина, что ДНК изобрели вирусы.
 
Он через сравнение белков, которые копируют разные типы нуклеиновых кислот, ДНК и РНК, в разных направлениях, показывает, что функция копирования РНК более древняя, потом появилась функция делать ДНК из РНК, а потом уже появилась функция копирования ДНК. И это вещь, которую уже можно пытаться не из головы сочинять, а посчитать, сравнивая белки и рассматривая возможные сценарии появления функций в этих семействах белков.
 
Переход от нуклеинового мира к белковому — это, по-моему, в каком-то смысле штука более сложная, чем возникновение жизни (во всяком случае, интеллектуально). Ну, хорошо, бог с ними, с вероятностными оценками, но там хотя бы принципиально понятно, как это могло быть, а здесь приходится труднее, потому что в том синтезе белка, который мы видим, участвует сразу очень много разных молекул. Ну, рибосомы — ладно, рибосомы — это РНКовый остов и много белков. Раньше думали, что РНКовый остов нужен как скелет, а собственно функции удлинения белка, прочитывания очередного триплета делают белки. Оказалось, что на самом деле основные ферментативные функции в рибосоме выполняет как раз РНК, которая является тем самым рибозимом. И это еще одно сильное соображение в пользу первичности РНКового мира, потому что реакция синтеза белка выполняется РНКовым ферментом. Но там есть еще куча всяких игроков, которые обеспечивают, собственно, специфичность этого синтеза, и довольно трудно себе представить (во всяком случае, мне), как могли бы быть устроены промежуточные полезные шаги.
 
— Минутку... Там есть некий сложный механизм...
 
— Механизм синтеза белка несложный. Там просто много участников, сложность в этом. Во-первых, имеется сама РНКовая матрица (мРНК). В данном случае никакой не рибозим, а просто матрица, в которой записано, какой белок должен быть синтезирован. И есть таблица соответствий троек нуклеотидов в мРНК и аминокислот, которые присоединяются к растущему белку. Это и есть таблица генетического кода. От нее бывают отклонения, явно более поздние, но в принципе она почти универсальная. Во-вторых, есть рибосома. Это довольно сложная конструкция, состоящая из РНКовой центральной части и белков, которые ее окружают. Рибосома осуществляет реакцию присоединения аминокислоты, причем не абы как, а в зависимости от того, какой триплет сейчас читается.
 
— Это и есть самый сложный элемент?
 
— Не-не-не. Я не сказал, как обеспечивается специфичность, как реализуется таблица генетического кода. Я ее описал как мысленный конструкт, но не как работающий механизм.
 
Итак, дальше... В-третьих, есть транспортные РНК (тРНК). Это маленькие РНКовые молекулы, которые подтаскивают аминокислоты к растущему белку. Каждая из них соединена с одной фиксированной аминокислотой. Таким образом, их должно быть как минимум 20, но на самом деле бывает больше. Разные тРНК могут присоединять одну и ту же аминокислоту, но одна тРНК присоединяет только одну аминокислоту. Это верно на 95%, как всё в биологии. Я могу рассказать, какие бывают исключения, но это отдельный разговор.
 
И вот очередная тройка экспонирована в нужном сайте рибосомы, приплывают разные тРНК, тыкаются. Если тРНК соединилась с нужным кодоном (путем уотсон-криковского взаимодействия, просто у нее есть в нужном месте антикодон, комплементарный кодону), то аминокислота, которая висела на этой тРНК, присоединяется к растущему белку. Это реакция удлинения белка, которую делает рибосома.
 
Наивный читатель подумал бы, что я рассказал механизм реализации генетического кода.
 
— Наивный главный редактор — тоже...
 
— А на самом деле нет, потому что я не сказал, каким образом получается так, что каждая тРНК имеет свою собственную аминокислоту. На этот случай есть специальные белки, которые называются аминоацил-тРНК-синтетазы. Эти белки специфичны для каждой аминокислоты, специфичны для тРНК данного типа, причем сразу для всех, соединенных с данной аминокислотой. На каждую аминокислоту имеется только одна аминоацил-тРНК-синтетаза. Она навешивает правильные аминокислоты на правильные тРНК.
 
И генетический код реализован не в рибосоме, не в тРНК, а в аминоацил-тРНК-синтетазах. Нетривиальная специфичность возникает здесь. Всё остальное — чистая механика.
 
И как эту хрень собрать из маленьких естественных шагов? Есть люди с богатой фантазией, которые утверждают, что примерно представляют, как это может быть. Мне немножко труднее. Но на самом деле понятно. Есть всякие соображения о том, что если есть рибозим, то хорошо бы у него аминокислота была в качестве кофактора, потому что рибозим становится более эффективен. Вот у нас уже появилось взаимодействие РНК с аминокислотами. Потом может оказаться, что еще лучше, если этот кофактор — не одна аминокислота, а какой-нибудь коротенький пептид. Потом может оказаться, что какие-то предки тРНК подтаскивали эти аминокислоты, взаимодействовали с рибозимом и засаживали эту аминокислоту в нужный пространственный карман. В общем, можно какие-то слова произносить, но, в отличие от истории с репликаторами, где хотя бы какие-то этапы реализованы экспериментально, здесь всё остается на уровне рассказов.
Тут и начинается кунинский мультиверс и вся эта черная магия.
 
— Выглядит устрашающе для постороннего человека. Как это всё заработало?
 
— Я и говорю. Для меня интеллектуальный вызов не в том, чтобы представить себе, как жизнь родилась (в нашем определении репликаторов, способных к дарвиновской эволюции), а в том, как она из РНКовой стала РНК-белковой. Это прикольно. Есть книжка Михаила Никитина о происхождении жизни, там всё это гораздо более подробно и внятно толкуется.
 
— И все-таки у меня складывается ощущение, что жизнь — вещь редчайшая. Кто-то считает, что жизнь зарождается на каждой глыбе с водой, летающей в космосе у подходящей звезды. В это как-то не верится.
 
— Ну-у-у... Во-первых, это действительно вопрос веры. Никакого способа узнать у нас нет. Во-вторых, никто не отменял панспермию. Происходит одно редкое событие, потом жизнь просто размножается, летая от планеты к планете...
 
— Панспермия мало что дает, потому что на нее мало времени. Вселенная-то всего ничего существует. Примерно в три раза дольше, чем время эволюции на Земле.
 
— Ну, мы не знаем. На близких расстояниях панспермия могла работать. Если это случилось достаточно рано, когда всё было близко...
 
— Невозможно.
 
— Астрофизика — наука еще более магическая, чем биология, я ее обсуждать не готов.
 
— Там всё просто!
 
— Просто, только правды не найдешь.
 
Предсказание состоит в следующем: если мы обнаруживаем жизнь где-то относительно недалеко от Земли, то, скорее всего, это будет жизнь земного типа — ровно потому, что она не зарождалась независимо. Мне кажется более вероятным, что у них общий источник.
 
— Может быть.
 
— А где-нибудь на другом конце Вселенной — там может быть всё что угодно.
 
— Какова роль случайности? Почему в таблице именно эти нуклеотиды?
 
— Неизвестно, естественно. Но есть совершенно чудесные опыты, когда люди меняют таблицу генетического кода, добавляют новые аминокислоты, которые специфично встраиваются, добавляют новые нуклеотиды, которые специфично копируются...
 
Современная синтетическая биология показывает, что конкретный выбор «букв» вроде бы необязателен. Однако есть некоторые общие принципы. Аминокислоты должны быть одной хиральности, иначе белки не будут сворачиваться.
 
Более того, школьное представление о том, что в биологии есть 20 аминокислот, не очень точное. В химии аминокислот не 20, а сотни, и биологически релевантных аминокислот больше, чем 20, они просто в белках оказываются другим способом, путем модификации тех аминокислот, которые уже вставились. Более того, вставляются не 20 аминокислот, а больше. Есть селеноцистеин, который вставляется очень специфично, по другому механизму, в конкретные белки в конкретных местах. Это расширение генетического кода, но при этом абсолютно механистическое. Есть небольшое отклонение от генетического кода, которое позволяет кодировать пиролизин. Это позднее добавление, специфичное для определенной группы архей, но оно могло бы возникнуть и раньше. А есть много аминокислот, которые получаются вторичной модификацией тех, которые уже вставились.
 
Есть совершенно чудесное письмо Крика конца 1950-х годов. (Я студентам всегда велю его читать, но, по-моему, никто этого не делает.) Тогда начали задумываться, что должен быть генетический код. Еще не было понятно, как он устроен...
 
— Гамов!
 
— Гамов сказал, что на эту тему надо думать, предложил абсолютно дурацкую модель, причем с самого начала было ясно, что она дурацкая. Но он молодец, он первым сформулировал, что такая проблема есть.
 
Так вот, есть письмо Крика членам РНКового клуба [2]. (Их там было несколько человек, они обменивались письмами.) Крик обдумывает, какие именно аминокислоты генетическим кодом должны кодироваться, а какие вторичны. Из каких-то косвенных соображений он пытается это понять. Химический состав белков был известен. Если вы отрежете от себя кусок и посмотрите химический состав, то там будет очень много аминокислоты гидроксипролин, потому что она входит в состав коллагена, входящего в состав соединительной ткани. Но гидроксипролина нет в генетическом коде —, это производная пролина, который кодируется. Если вы наивно будете думать, что кодироваться должны аминокислоты, которых много в куске мяса, вы приплывете.
 
Дальше у него соображения, что у животных гидроксипролин есть, а у бактерий его нету вовсе, поэтому маловероятно, что он есть в генетическом коде. Гидроксипролин есть только в коллагене, его нет в других белках. Стало быть, это вторичная вещь. Куча таких рассуждений — и удивительно, что Крик всё угадал! Это очень поучительный текст. Один из очень немногих примеров в биологии, когда оказывается полезно просто подумать.

P.S. Эти высказывания хорошо согласуются с моей гипотезой возникновения жизни на нашей планете (изначально не в клеточной форме, а в протоплазменной форме):
ЦитироватьПервая жизнь, которую мы видим, — это все-таки не клетка, а химический состав каких-то осадков, который трудно себе представить путем неорганического синтеза. Никаких клеток мы при этом не видим, насколько я понимаю. Вообще, я не специалист по этим вопросам.
 
По существующим моделям, репликаторы живут в каких-то глинистых породах, где имеются микрокомпартменты — попросту говоря, поры — вследствие геологической структуры породы, и это хорошо тем, что появляется понятие коллектива репликаторов, потому что они ограничены в пространстве и могут взаимодействовать друг с другом. Это довольно существенная вещь, потому что появляется разделение функций. Кто-то лучше делает одно, кто-то лучше делает другое, а из-за того, что они пространственно ограничены, они не растекаются, и функции, завязанные друг на друга, могут эволюционировать параллельно.
И со сценарием формирования клеточной формы жизни (именно сразу в виде протоколонии, а не в виде отдельных разрозненных протоклеток) я тоже, вроде, угадал.

АrefievPV

#200
Александр Марков: «Я считаю вполне реальным, что в одной галактике есть несколько обитаемых планет»
http://trv-science.ru/2022/05/markov-abiogenesis/
Цитировать— В предыдущем интервью с Михаилом Гельфандом мы обсуждали проблему первого репликатора, с которого и должна была стартовать дарвиновская эволюция. Это самовоспроизводящаяся молекула РНК, называемая «рибозим». Правильно?
 
— Да, согласно одной из ведущих версий, первыми репликаторами были рибозимы.
 
— По оценкам Евгения Кунина, первый рибозим уже состоял примерно из 2000 «букв» четырехбуквенного алфавита, и вероятность случайной сборки — порядка 10–1000. Насколько я понимаю, сейчас основные надежды связаны с тем, чтобы преодолеть эту пропасть в тысячу порядков в несколько прыжков. Михаил рассказал, что, возможно, были короткие репликаторы, которые копируются плохо, но возникают с большой вероятностью. И они умеют объединяться в длинные репликаторы, гораздо более качественные. Так вероятность получения работающего рибозима радикально повышается. Честно говоря, я не понимаю, насколько такая схема может повысить вероятность. А что вы думаете по этому поводу?
 
— Действительно, в этой задаче очень много неизвестных. Ученые ищут разные пути того, как могла бы повыситься эта вероятность. Кунин моделирует случайную самосборку очень длинного и очень качественного рибозима. Да, вероятность такого случая в наблюдаемой части Вселенной исчезающе мала. Это всё так. Действительно, ищут обходные пути: дескать, первый репликатор не обязательно должен быть одним мощным и эффективным рибозимом. Не исключено, что это было некое содружество коротеньких рибозимов, которые могли себя реплицировать. Но чем длиннее геном, тем выше требования к точности репликации. При размножении коротких молекул какие-то копии окажутся правильными. Кроме репликации, есть еще лигирование — сшивание. Какие-то короткие полимеразы могли реплицировать рибозимы, а другие — лигазы, которые тоже просты и могли легко получаться, — сшивают короткие рибозимы в более длинные.
 
Но на самом деле самая интересная возможность происхождения жизни — неферментативная репликация. Это процесс, в котором молекулы РНК могут реплицироваться вообще без каких-либо ферментов или рибозимов. Этот процесс в природе существует, он активно изучается. Задача — найти реалистичные условия, где этот процесс мог бы идти достаточно точно и быстро. В этой области наблюдается медленный, но верный прогресс. Пока этот процесс идет недостаточно точно, недостаточно быстро, но всё же идет в некотором диапазоне условий. Даже умудряются делать модели протоклетки — мембранные пузырьки, внутри которых с помощью простых катализаторов происходит репликация коротких молекул РНК. Надо искать простые катализаторы. Есть вероятность, что в роли таких катализаторов могут выступать пептиды из двух-трех-пяти аминокислот, может быть, комплексы с короткими молекулами РНК. Там обязательно должны быть ионы магния, и какой-нибудь простенький пептид, который удерживает этот ион, мог бы помочь. Всё это — ключевой мировоззренческий вопрос: возможны ли реалистичные условия для неферментативной репликации РНК или они в принципе невозможны нигде во Вселенной.
 

 
— Правильно ли я понял, что в таких случаях эволюция может стартовать с достаточно коротких РНК, которые будут постепенно удлиняться и совершенствоваться?
 
— В том-то всё и дело: если неферментативная репликация возможна, то дарвиновская эволюция стартует гораздо раньше — как только появляется любая молекула РНК. Вообще любая. Если есть условия, молекула будет размножаться, и всё — эволюция уже пошла! И будет отбор: будут отбираться такие молекулы, которые лучше реплицируются в этих условиях, такие молекулы, которые помогают себе и другим быстро реплицироваться. И пошло-поехало. Я думаю, это на какие-то громадные числа увеличивает вероятность зарождения жизни.
 
— Мы обсудили самый старт эволюции, то есть возникновение репликатора. Какие там дальше есть пропасти? Михаил Гельфанд назвал в качестве следующей проблемы синтез белков. Велика ли, по-вашему, эта пропасть? Легко ли она преодолевается?
 
— Тут, конечно, спорить не приходится — эта пропасть велика. Это был огромный эволюционный шаг — появление контролируемого кодируемого синтеза белков. Ясно, что это результат эволюции РНК-мира; ясно по многим признакам. В частности, то, что Михаил в прошлый раз упоминал, такой вопиющий факт: основная рабочая часть клеточной машинки по синтезу белка, рибосомы, сделана из РНК. Хотя все остальные рабочие машинки в клетке сделаны из белков. А самая главная почему-то — из РНК. Это — главное наследие РНК-мира. Здесь много возможных сценариев, но люди, которые изучают рибосомную РНК, транспортную РНК, находят какие-то следы, какие-то зацепки, которые показывают, как, через какие промежуточные этапы могла происходить такая эволюция. То есть гипотетические сценарии есть. Но непонятно, как оценить, насколько вероятны подобные сценарии.
 

Последовательные этапы (a–g) эволюции рибосомы. Красным цветом выделена проторибосома, желтым — «выросты» (1–3), сиреневым — малая субъединица. 4 — выходной канал для синтезируемого белка. 5–9 — части рибосомы, показанные на рисунках a–e. 10 — «дополнительная» часть большой субъединицы, в состав которой не входит 23S-рРНК. nature.com
 
Тот же Евгений Кунин сейчас говорит, что всё это очень маловероятно, что нужно привлекать мультивселенную, но у него же есть более ранний сценарий, где описана эволюция белкового синтеза в РНК-мире. И если ему сказать: «Ну, вы же сами предложили такой хороший красивый сценарий», он говорит: «Ну нет, мне он самому кажется малоправдоподобным и натянутым». А мне нравится! Мне кажется, что это хороший, правдоподобный сценарий. Вот как это оценить? Трудно сказать, какова степень правдоподобия.
 
Но вот что мы знаем: рибосома состоит из двух субъединиц — большой и малой. Рибосомная РНК большой субъединицы представляет из себя нетривиальную трехмерную структуру — этакий паззл, из которого можно вынимать детальки, не повреждая при этом то, что остается. При случайной сборке так быть не могло бы. Видимо, рибосома начиналась с маленького ядра, а потом к ней добавлялись куски, которые ядро не портили, а улучшали его функцию. И если мы разберем большую субъединицу рибосомы до маленького ядра, с которого всё началось, то окажется, что это рибозим. Собственно, это активный каталитический центр рибосомы, который присоединяет аминокислоты растущей белковой цепочки. Соответственно, с чего могла начаться эволюция большой субъединицы рибосомы? С маленького рибозима, который соединял аминокислоты — может быть, он соединял их случайно. Может быть, в окружающей среде были всего одна-две-три аминокислоты и он делал из них какие-то короткие случайные пептиды. Так это всё могло начаться.
 
У малой субъединицы рибосомы, как ни удивительно, подобная же трехмерная структура, которая тоже разбирается, как трехмерный паззл, до некого ядра. И остающееся ядро — другой активный центр рибосомы, который контролирует соответствие триплета в матричной РНК, которая кодирует белок, и в транспортной РНК, которая приносит аминокислоту, — чтобы три «буквы» с одной стороны были комплементарны трем «буквам» с другой стороны. Он это проверяет.
 
Красивая гипотеза, которая мне очень нравится, состоит в том, что в прошлой жизни малая субъединица рибосомы была рибозимом-полимеразой — тем самым, который занимался размножением РНК. Только размножался он, присоединяя к цепочке не по одному нуклеотиду, а по три. А предок транспортной РНК был рибозимом — подносчиком триплетов для этого размножения. То есть какие-то сценарии в эволюции белкового синтеза на самом деле наклевываются.
 
— Но, как я понимаю, до соответствующих оценок вероятности еще очень и очень далеко?
 
— Действительно, непонятно, как это посчитать.
 
— То есть вероятность «тупой» случайной сборки молекулы посчитать легко, но как оценить вероятность с промежуточными шагами — совершенно непонятно.
 
— Может быть, в будущем смогут проводить какие-то эксперименты на тему эволюции комплексов РНК в пробирке. Просто искусственная эволюция — она же может протекать быстро. Сейчас этим занимаются, но требуется некий следующий уровень. Тогда, может быть, удастся основные промежуточные этапы на пути к рибосоме воспроизвести на эксперименте. То есть налить все ингредиенты в чашку, создать подходящие условия и посмотреть, что получится.
— Насколько сложно создать условия, чтобы РНК-мир и синтез белка заработали? Что для этого нужно? Как мог получиться такой «автоклав», где всё это произошло? На слуху версия черных курильщиков. Может быть, есть какие-то еще варианты?
 
— Когда ищут колыбель жизни, говорят о черных курильщиках, белых курильщиках, есть теория «цинкового мира», грязевые котлы — разные варианты. При этом пытаются решить кучу проблем. Например, для начала должен идти синтез простой органики, нуклеотидов. Абиогеннный синтез нуклеотидов — да еще желательно, чтобы всех четырех и сразу в одном месте. Вот эту задачу пока пытаются решить. А в каких условиях идет эволюция сложного РНК-мира, к этому еще даже не приступали.
 
Я могу сказать, что для тех задач, которые решаются в этой области (ну, например, поиск условий для репликации РНК в каких-то протоклетках, что-то в этом роде, или поиск условий для абиогенного синтеза нуклеотидов), типичная ситуация такова. Ученые упираются в какую-то проблему: этот этап проходит, а следующий не идет — и всё, никак.
 
Год, два, десять лет не могут преодолеть тупик. А потом у кого-то случается озарение или просто случайным образом кто-то наткнется: «А вот если сюда добавить фосфорной кислоты маленько»... Вдруг раз — и всё пошло. Или, в другом случае, лимонная кислота спасла: не шло, не шло, цитрат добавили — опа, вышло! Какие-то простые неожиданные находки могут внезапно открыть глаза на то, как этот процесс мог бы происходить. Я надеюсь, что и для нерешенных проблем найдется какой-нибудь «фосфат», которого достаточно капнуть, чтобы всё пошло.
 
— Итак, есть у нас репликатор, есть синтез белков, но как из этого сконструировать работающую клетку — наверное, тоже вопрос? Или здесь всё проще?
 
— Не знаю, как насчет простоты или сложности, но тут есть две версии.
Первая: клетки, окруженные липидной мембраной, появились очень рано. Можно сконструировать абиогенные мембранные пузырьки, причем они обладают интересными свойствами, с такими еще Опарин работал. А сейчас работают с пузырьками из липидов или других простых полярных молекул с гидрофобными и гидрофильными концами. Одна из идей состоит в том, что уже с самого начала появление репликаторов шло внутри таких липидных пузырьков.
 
Другое направление мысли: мембранные пузырьки появились довольно поздно, а сначала в роли емкостей выступали поры в минералах всяких черных курильщиков и прочих вулканических источников. Там формируются пористые материалы типа пемзы с полупроницаемыми стенками. Такие поры могли играть роль прототипов клеток, где развивалась жизнь, расселяясь в соседние полости. Более успешные сообщества рибозимов занимали новые клетки, выигрывая конкуренцию. А уже потом, когда они далеко эволюционировали, эти сообщества научились одеваться в липидные оболочки.
 
— Интересно, самые примитивные бактерии или археи — они близки к тому, с чего стартовали самые древние клетки, или это уже достаточно продвинутый продукт эволюции?
 
— К сожалению, до нас дожили только такие бактерии и археи, что даже самые простые из них — это уже результат очень долгой сложной эволюции. У них уже как минимум несколько сотен генов, много белков, у них, конечно, есть рибосомы, специализированные белковые ферменты для репликации ДНК, для транскрипции, для синтеза белков, для много чего еще. Несколько сотен хороших проэволюционировавших белковых ферментов, весь аппарат синтеза белка — всё есть в готовом виде. Понятно, что прямо так это возникнуть не могло. А гипотетических примитивных форм жизни — их нет. Если были когда-то, то вымерли.
 
— Но какие-нибудь попытки теоретической экстраполяции назад, к примитивным предковым формам, — они делаются? Или это безнадежно тяжело — представить себе, какая более простая система могла быть их предком? Возможно это или нет, хотя бы чисто теоретически?
 
— Теоретически оно, конечно, возможно, мы уже говорили о разных формах жизни. Эксперименты тоже проводятся, с разных сторон. С одной стороны, есть попытки сделать бактерию с минимальным геномом. То есть взять реальную бактерию и потихоньку упрощать и упрощать ее, выкидывая всё, без чего она хоть как-то может обойтись. Это один подход. Другой подход — то, что делает Джек Шостак: протоклетки в виде капелек, внутрь которых добавляются РНК, ДНК, какие-нибудь ионы, аминокислоты, чтобы всё это росло и размножалось. То есть к первой клетке экспериментаторы пытаются идти с двух сторон.
 
— А для численного моделирования это еще неподъемные задачи?
 
— Я думаю, это очень трудно. Я думаю, невозможно предсказать все химические свойства биополимеров, которые будут появляться в численной модели. Мы можем смоделировать на компьютере любую последовательность из четырех «букв». Но предсказать, как будет себя вести такая молекула РНК, какие у нее будут интересные биологические свойства — черта с два! Приходится их реально синтезировать и отбирать по их физической и химической характеристике.
 
— Теперь немного спекулятивный вопрос. Ваше ощущение: возникновение первой клетки — это процесс вероятный или невероятный, если нормировать на число планет с подходящими условиями? Понятно, что здесь нет надежных зацепок, речь может идти только об ощущениях.
 
— Катастрофически не хватает данных.
 
— Настолько не хватает, что даже на уровне ощущения трудно сформулировать?
 
— Я все-таки верю, что на пути поиска условий для неферментативной репликации будут дальнейшие успехи и станет ясно, что такое в принципе возможно. В таком случае я считаю вполне реальным, что в одной галактике есть несколько живых планет.
 
— Это уже нечто!
 
— А если окажется, что Кунин прав и неферментативная репликация невозможна, — ну, тогда безнадега.
 
— Тогда да, тогда привлекаем на помощь мультиверс.
 
— Тогда только так. Но мне кажется, там есть что-то в логике. Мне кажется, неферментативная репликация должна работать чисто из логических соображений. Можно я слайд покажу? Вот смотрите: идея в том, что если рождение первого репликатора шло по Кунину, то есть всё началось со сборки огромного эффективного рибозима, то на какой-то планете сначала должно было синтезироваться абиогенным путем неимоверное количество случайных РНК — настолько много, что одна из них случайно оказалась с такими редчайшими свойствами. Почему эти молекулы так размножились на планете — непонятно. Ну, и нужны десять в невероятной степени планет, чтобы хотя бы на одной из них собралась нужная молекула. Почему на них на всех в таком диком количестве синтезировалась РНК, остается непонятным. И самое интересное: молекула РНК обладает свойством комплементарности, что и делает жизнь возможной. Она кодирует сама себя, она может служить матрицей для собственного размножения.
 
Это свойство в кунинском сценарии возникает как рояль в кустах. То есть молекулы синтезировались, не используя это свойство, а потом, когда возник огромный рибозим, оно вдруг пригодилось — дескать, как хорошо, что у нас, оказывается, есть такое свойство, теперь будем размножаться.
 
В сценарии, где неферментативная репликация возможна, всё не так. Там не нужно огромного количества РНК. Достаточно первой — она появилась, и всё стало размножаться. В этом случае комплементарность — не рояль в кустах, а то самое свойство, благодаря которому они начали размножаться с самого начала. То есть получается гораздо проще.
 
Естественное возражение здесь такое: «До сих пор не найдены условия, где неферментативная репликация идет достаточно быстро и достаточно точно». Тем не менее она как-то идет в пробирке у ученых. Вероятность того, что она где-то идет лучше и быстрее, может быть, маленькая, но ее надо сравнивать с той самой десять в минус тысячной, которая требуется во втором сценарии. На мой взгляд, очевидно, что порядки совершенно разные. Гораздо вероятней, что найдутся условия, при которых работает неферментативная репликация, чем что таких условий в природе не существует. Это, конечно, не наука, а какая-то натурфилософия, тем не менее мне интуитивно кажется, что должно быть так.
 
— Звучит убедительно. Мы дошли до клетки и согласились с тем, что в Галактике существуют планеты, где есть живые клетки. Какие следующие узкие места? Ведь у нас жизнь представлена не просто клетками, а развитыми организмами. Следующая проблема — возникновение эукариот? Или есть еще пропасти по дороге?
 
— Да, из оставшихся крупных преобразований возникновение эукариот — самое радикальное. Действительно, жизнь на Земле зародилась четыре или четыре с чем-то миллиарда лет назад, а эукариотическая клетка появилась от силы два миллиарда лет назад. Ну, может, 2,1–2,2 миллиарда. То есть два миллиарда лет существовали только бактерии и археи — только прокариоты. По-видимому, возникновение эукариотической клетки — очень маловероятное событие, при том что все современные эукариоты сходятся к одному предку, — то есть она возникла один раз. Это некая прикидка — о вероятности события можем судить по количеству раз, когда оно произошло. Скажем, наземные животные научились летать активно машущим полетом четыре раза: насекомые, птерозавры, летучие мыши, птицы. Значит, это вероятное событие. А эукариоты, насколько мы знаем, возникли только раз. Хотя нельзя исключить, что подобная сложная клетка возникала несколько раз, но до нас дожили потомки только одной.
 
Ситуация по поводу возникновения эукариот сейчас стала более понятной, поскольку найдена переходная промежуточная группа архей, у которой нашлась масса белков, которые считались чисто эукариотическими. Сейчас их только начинают изучать. Первых представителей этой группы назвали локиархеями, поскольку их нашли в глубоководном гидротермальном источнике в северной Атлантике, который называется Замок Локи. Потом начали находить других представителей этой группы архей, которая оказалась очень большой. Они живут во всяких донных осадках — и в морях, и в подземных водах, и в эстуариях их находят. Появились торархеи, одинархеи, хеймдалльархеи, и всю эту группу недавно назвали «асгардархеи». Сначала они были известны только по геномам — извлекали ДНК из донного осадка и секвенировали. Потом с большим трудом удалось вырастить в лаборатории одного представителя. Стали его изучать — многое прояснилось, хотя еще не всё. В результате мы можем твердо сказать многое о происхождении эукариот.
 
— Такой вопрос: без этого прыжка, на одних примитивных клетках, на прокариотах, смогли бы когда-то построиться сложные многоклеточные организмы? Или это безнадежно?
 
— Вряд ли. Очень вряд ли, поскольку что нам, собственно, дает эукариотическая клетка? Главное — есть ядро, в котором заключен генетический материал и почти не происходит обмена веществ. И вокруг есть цитоплазма, где отсутствует ДНК, но происходит масса всяких биохимических реакций: обмен веществ, получение энергии, синтез всего, что нужно, и так далее. И это открывает горизонты для эволюции всяких механизмов аккуратной регуляции работы генов. Можно спокойно в отрыве от кипящей биохимической жизни включать, выключать, подкручивать в ядре работу всяких генов. Это открыло перед эукариотами такую возможность, что при одном и том же геноме без мутаций, без эволюции можно клетку делать очень разной. Не меняя генома, только меняя регуляцию работы генов. Именно на этом построены многоклеточные организмы. У них все клетки имеют один и тот же геном, но при этом они очень разные — нервные клетки, клетки кожи, кости, мышцы... Сотни разных типов клеток. Таких возможностей у прокариот, конечно, нет в принципе. Они могут немного регулировать свои гены, но такого разнообразия фенотипов при неизменном геноме у них нет и, видимо, быть не может. Конечно, эукариотизация была необходимым условием для появления сложных многоклеточных форм жизни.
P.S. Эти высказывания также не противоречат сценариям, которые я озвучивал в своей гипотезе:
ЦитироватьНо на самом деле самая интересная возможность происхождения жизни — неферментативная репликация. Это процесс, в котором молекулы РНК могут реплицироваться вообще без каких-либо ферментов или рибозимов. Этот процесс в природе существует, он активно изучается. Задача — найти реалистичные условия, где этот процесс мог бы идти достаточно точно и быстро. В этой области наблюдается медленный, но верный прогресс. Пока этот процесс идет недостаточно точно, недостаточно быстро, но всё же идет в некотором диапазоне условий. Даже умудряются делать модели протоклетки — мембранные пузырьки, внутри которых с помощью простых катализаторов происходит репликация коротких молекул РНК. Надо искать простые катализаторы. Есть вероятность, что в роли таких катализаторов могут выступать пептиды из двух-трех-пяти аминокислот, может быть, комплексы с короткими молекулами РНК. Там обязательно должны быть ионы магния, и какой-нибудь простенький пептид, который удерживает этот ион, мог бы помочь. Всё это — ключевой мировоззренческий вопрос: возможны ли реалистичные условия для неферментативной репликации РНК или они в принципе невозможны нигде во Вселенной.
Цитировать— В том-то всё и дело: если неферментативная репликация возможна, то дарвиновская эволюция стартует гораздо раньше — как только появляется любая молекула РНК. Вообще любая. Если есть условия, молекула будет размножаться, и всё — эволюция уже пошла! И будет отбор: будут отбираться такие молекулы, которые лучше реплицируются в этих условиях, такие молекулы, которые помогают себе и другим быстро реплицироваться. И пошло-поехало. Я думаю, это на какие-то громадные числа увеличивает вероятность зарождения жизни.
Цитировать— Не знаю, как насчет простоты или сложности, но тут есть две версии.
Первая: клетки, окруженные липидной мембраной, появились очень рано. Можно сконструировать абиогенные мембранные пузырьки, причем они обладают интересными свойствами, с такими еще Опарин работал. А сейчас работают с пузырьками из липидов или других простых полярных молекул с гидрофобными и гидрофильными концами. Одна из идей состоит в том, что уже с самого начала появление репликаторов шло внутри таких липидных пузырьков.
 
Другое направление мысли: мембранные пузырьки появились довольно поздно, а сначала в роли емкостей выступали поры в минералах всяких черных курильщиков и прочих вулканических источников. Там формируются пористые материалы типа пемзы с полупроницаемыми стенками. Такие поры могли играть роль прототипов клеток, где развивалась жизнь, расселяясь в соседние полости. Более успешные сообщества рибозимов занимали новые клетки, выигрывая конкуренцию. А уже потом, когда они далеко эволюционировали, эти сообщества научились одеваться в липидные оболочки.
И про пористые поверхности минералов, из которых сложены дно и стенки прудов гидрогеологической системы, и про массивы пены на поверхности пруда и в прибрежной зоне, и про пузырьки, возникающие при выделении газообразных продуктов метаболитических реакций на дне и стенках и т.д. и т.п., подробно пояснял. Про полупроницаемость («дырявость») мембран пузырьков я тоже упоминал.

АrefievPV

Происхождение жизни. Следующие миллиарды лет
http://trv-science.ru/2022/05/nikitin-abiogenesis/
ЦитироватьСтарт эволюции
 
— Напоминаю, точка, с которой начались предыдущие интервью, — возникновение репликатора — некой конструкции, которой, скорее всего, была молекула РНК, умеющая воспроизводить себя, может быть, с небольшими дефектами, что дает наследственность и изменчивость. И с этого стартует дарвиновская эволюция. Михаил, теперь изложите ваш взгляд на проблему первого репликатора. Есть точка зрения, что вероятность его возникновения чудовищно мала.
 
— Да. Первый репликатор, зачем он нужен? Мы знаем единственный механизм, который может порождать более сложные системы из более простых — это дарвиновская эволюция, работающая путем мутаций и естественного отбора. Чтобы дарвиновская эволюция шла, нужны некие системы, способные размножаться — порождать свои собственные копии, не идеальные. Среди этих копий будет дальше идти отбор по скорейшему размножению. Простейшая единица, представленная в современном мире, способная размножаться, — это прокариотная клетка бактериального или архейного типа.
 
Но такая клетка — это довольно сложная система, она должна содержать как минимум около полутора тысяч белков, белки должны быть собраны в супрамолекулярные комплексы, такие как рибосома и роторная АТФаза, нужен геном из более миллиона нуклеотидов, который будет всё это кодировать, нужна мембрана, которая будет окружать клетку. То есть клетка — это заведомо хороший репликатор, но она довольно сложная, и получить клетку без дарвиновской эволюции путем случайной самосборки очень-очень маловероятно. Так считал еще Фред Хойл в 1970-е годы, и получается, что размеров видимой Вселенной и времени ее существования для этого принципиально недостаточно.
 
Более простые самореплицирующиеся единицы тоже известны — это вирусы. Но все вирусы являются паразитами клеток, они несамостоятельны. И теория мира РНК в конце 1970-х — в 1980-е годы попыталась это как-то примирить: нащупать существование репликаторов, по сложности сравнимых с вирусами, но при этом не нуждающихся в клетках. Ключевая гипотеза о мире РНК состоит в том, что они не содержат белков и ДНК, не используют кодируемый белковый синтез, и из трех типов полимеров — ДНК, РНК, белки — в них используются только РНК. Потому, что только РНК может эффективно выполнять функцию катализа, т. е. работать ферментом — то, что сейчас делают белки, — и хранить наследственную информацию, с чем ДНК справляется лучше, но РНК, тем не менее, служит наследственным материалом многих вирусов до сих пор.
 
Основная форма первичного репликатора в этой концепции — молекула РНК, способная копировать саму себя. То есть РНК-фермент рибозим с активностью РНК-зависимой РНК-полимеразы. Для его существования нужна экологическая ниша, где будут доступны готовые нуклеотиды для репликации — это тоже вопрос, который надо решать. С 1990-х годов такой репликатор пытались получить экспериментально, отбором РНК с нужными каталитическими свойствами. Успехи за двадцать с лишним лет довольно скромные.
 
Молекулы РНК, которые сколько-нибудь эффективно копируют другую РНК, — они довольно крупные, больше 200 нуклеотидов, и получить их случайной самосборкой тоже не очень просто (хотя, конечно, проще, чем клетку). Но, главное, они недостаточно точны и эффективны, чтобы сделать собственную копию даже в идеальных условиях.
Поэтому неферментативная репликация была придумана как способ обойти эти проблемы с рибозимами — РНК-полимеразами. Например, в каких-то условиях на минеральной подложке новая РНК может собираться не только случайно, но и на матрице уже существующей цепи РНК. Для катализа этой реакции в простейшем случае нужен только магний, а рибозимов и тем более белковых РНК-полимераз не нужно. В экспериментах неферментативная репликация дает совсем коротенькие молекулы РНК — 10–15, максимум 20 нуклеотидов — и довольно сильно страдает от неточностей. Но она как-то работает, и можно предположить, что неферментативная репликация предшествовала первым рибозимам. Она позволяет начать дарвиновскую эволюцию еще раньше, чем в классическом мире РНК.
 
У меня есть одна идея, которую пока химики, работающие с рибозимами, экспериментально не проверяли, насчет того, каким мог быть первый рибозим. Для неферментативной репликации первый рибозим, который мог быть поддержан естественным отбором, — это не полимераза. Это рибозим с противоположной активностью — экзонуклеаза, отрезающий отдельные звенья от концов цепочки РНК.
 
Как рибозим, разрушающий цепочки, может способствовать их копированию? Да очень просто: в любой современной системе копирования нуклеиновых кислот есть ферменты с такой активностью. Они называются «проверочные экзонуклеазы», отрезающие с конца растущей цепочки не все нуклеотиды подряд, а только ошибочные, не комплементарные нуклеотиду матричной цепи. А основные проблемы с неферментативной репликацией РНК — это как раз низкая точность, которая эффективно компенсируется такой проверочной экзонуклеазой, и низкая скорость. А низкая скорость на 90% следует из низкой точности: к неправильно присоединенному нуклеотиду очень долго сложно и маловероятно присоединить следующий правильный. То есть на каждом месте ошибки неферментативная репликация буксует. Рибозим — проверочная экзонуклеаза, наверное, может быть гораздо проще, чем рибозим-полимераза, — не 200 нуклеотидов, а меньше 100, даже порядка 50, и его появление гораздо вероятней. Эта идея пока экспериментально не проверена, но мне она кажется красивой, кажется, что это способ получить дарвиновскую эволюцию как можно раньше.
 
— Есть ли какой-то шанс проверить это экспериментально?
 
— Конечно, такие работы идут с 1990-х годов — по получению рибозимов путем искусственного отбора из большой библиотеки молекул РНК со случайными последовательностями. Так было получено много вариантов рибозимов-полимераз, рибозимов-лигаз и рибозимов с разными другими ферментативными активностями, вплоть до какой-нибудь фотолиазы и алкогольдегидрогеназы.
 
От самокопирования РНК к синтезу белков
 
— Теперь я предлагаю пройтись по узким местам. Мы обсудили первое узкое место — возникновение репликатора. Следующее — Михаил Гельфанд отнес к узким местам синтез белка.
 
— Появление рибосомы и кодирование белка.
 
— С другой стороны, Александр Марков объяснил, что там в рибосоме тоже просматривается ядро из РНК, которое могло этот переход облегчить.
 
— Да, Александр уже рассказал. То, что я могу сказать, что древнее ядро большой субъединицы рибосомной РНК — пептидил-трансферазный центр — в ранние эпохи могло работать отдельно от малой субъединицы, содержащей декодирующий центр. То есть не пользоваться матричной РНК и не иметь такого мощного средства контроля за последовательностью создаваемого белка. Но! Это всё равно могло быть поддержано естественным отбором, если аминокислотный алфавит был гораздо меньше — в пределах от двух до четырех аминокислот. Поддержан тремя основными способами.
 
Первый способ: производство гомополимерных пептидов, т. е. повторять одну аминокислоту всё время. Способ второй — чередовать аминокислоты — две, три или четыре — какими-то простейшими способами, типа АБ-АБ-АБ. Способ третий — случайно комбинировать две, три или четыре аминокислоты. При таком маленьком аминокислотном алфавите белки, а точнее, пептиды, поскольку они не смогут компактно и однозначно свернуться, будут иметь воспроизводимые физико-химические свойства, даже если комбинировать две-три аминокислоты случайно. И очевидный класс пептидов, который может быть поддержан естественным отбором, который может быть полезен миру РНК и синтезируется таким образом, — это катионные пептиды, пептиды с положительным зарядом, содержащие аминокислоты типа лизина и аргинина. Они притягиваются к отрицательно заряженным РНК (все РНК отрицательно заряжены), помогают компактному устойчивому сворачиванию рибозимов и повышают активность рибозимов почти любых типов. Это всё экспериментально проверено. Вот такие вспомогательные катионные пептиды могли быть продуктом маленькой простенькой проторибосомы, не имеющей малой субъединицы, не имеющей матричной РНК, не имеющей декодирующего центра, и имеющей какую-то маленькую часть от современной большой субъединицы рибосомной РНК.
 
В экспериментах большую субъединицу рибосомной РНК кишечной палочки удалось сократить примерно с 3 тыс. нуклеотидов до 600, т. е. в пять раз, и показать, что такой огрызок, содержащий пептидил-трансферазный центр и ничего больше, тем не менее, связывает транспортную РНК, несущую аминокислоту, и проводит пептидилтрансферазную реакцию. То есть пептиды соединяет. И эта простая проторибосома дальше могла пошагово, когда каждый шаг поддержан естественным отбором, усложняться, расширять аминокислотный алфавит, переходить от случайного чередования аминокислот к закономерному и, в конце концов, на стадии, по-видимому, 6-аминокислотного алфавита перейти к кодируемому белковому синтезу.
 
И в структуре рибосомных белков, и в структуре транспортных РНК, присоединяющих к ним аминокислоты, можно довольно уверенно заключить, что такие аминокислоты, как глицин, аланин и пролин, точно были на стадии некодируемого пептидного синтеза. Скорее всего, на этой же стадии были аспартат, валин и какие-то положительно заряженные аминокислоты — либо аргинин, либо какие-то его более простые аналоги, не существующие в современных белках. То есть минимальный аминокислотный алфавит для того, чтобы получить белки, способные самостоятельно свернуться, — это глицин, аланин, пролин, аспартат, валин и одна положительно заряженная аминокислота.
 
— Понятно, то есть с этого синтез белков стартовал, потом усложнился, и добавились остальные аминокислоты.
 
— Да
 
— Видимо, это самое начало эволюции, которое заняло какой-то неразрешимо короткий отрезок времени.
 
— Да, это прошло в пределах первых миллионов лет.
 
Прокариоты заселяют и преобразуют мир
 
— Дальше прошло около двух миллиардов лет до появления первой эукариотной клетки. В эти два миллиарда лет что-нибудь еще радикальное произошло?
 
— За два миллиарда лет от первой прокариотной клетки до первой эукариотной клетки, конечно, произошли некоторые интересные события. Эволюция шла не так быстро, как в начале, до появления самых первых клеток, но прокариоты наращивали разнообразие, их становилось всё больше и больше, они освоили всю планету. Если первая клетка была обитателем каких-то редких геотермальных водоемов типа грязевых котлов и у нее была очень узкая экологическая ниша, то ее потомки освоили все моря — поверхность и глубины, — пресные воды и проникли в толщу земной коры.
 
В современной земной коре бурение показывает, что она заселена бактериями до глубин 4–5, а иногда даже 6 км, причем распространение жизни в глубину ограничено только ростом температуры — на глубине 6 км температура уже около 80 °C. Бактерии и археи, заселяющие толщу земной коры, имеют чудовищную биомассу, превосходящую массу всей жизни на поверхности, включая деревья. Глубинная биосфера живет медленно и малопродуктивно, но биомасса ее огромна.
 
За два миллиарда лет до появления эукариот жизнь распространилась из луж по всей толще морей и земной коры, нарастила разнообразие и освоила некоторые новые биохимические процессы, прежде всего кислородный фотосинтез, который радикально преобразил планету. Это именно тот процесс, который делает обитаемую планету наблюдаемой на космических расстояниях.
 
Сейчас приступает к работе космический телескоп «Джеймс Уэбб», и в его научные задачи входит спектральный анализ атмосфер транзитных экзопланет на расстояниях до сотни световых лет, насколько я помню, и, таким образом, он сможет отличить живую планету, с атмосферой, похожей на земную, обогащенную кислородом из-за фотосинтеза, от безжизненных планет с преобладанием азота и углекислого газа в атмосфере. Два не очень стабильных на геологических временах газа, выделяемых живыми организмами, — метан и кислород. Метан преимущественно накапливается в атмосфере до появления на планете кислородного фотосинтеза, после чего накапливается уже кислород. И то и другое может быть обнаружено современными телескопами на расстояниях до 100 световых лет.
 
Видимо, кислородный фотосинтез сыграл важную роль в появлении эукариот, которые по своей биохимии довольно однообразны по сравнению с прокариотами. Но у эукариот есть один биохимический путь, которого бактерии не придумали. Это синтез стеролов, прежде всего холестирола. Стеролы входят в состав эукариотных клеточных мембран — придают им повышенную гибкость и текучесть и помогают таким эукариотным процессам, как фагоцитоз и ошнуровка и слияние мембранных пузырьков. Фагоцитоз — это поглощение эукариотной клеткой какой-то твердой пищевой частицы, которая окружается мембраной и проваливается внутрь клетки. Он позволяет переваривать эту твердую пищу в каком-то контролируемом объеме. Прокариоты питаются жидкой пищей, растворимыми молекулами. Только эукариоты смогли питаться твердыми частицами, прежде всего целыми прокариотными клетками. То есть в прокариотном мире первые эукариоты были сверххищниками, которые могли съесть кого угодно.
 
— Вернемся немного назад. Насколько неизбежным было появление кислородного фотосинтеза, который преобразовал планету? Раз уж возникла прокариотная жизнь, насколько вероятным будет появление кислородной атмосферы?
 
— Я могу предположить, что это достаточно неизбежно. Это следствие нескольких последовательных ресурсных кризисов. Среди прокариот существует несколько вариантов бескислородного фотосинтеза. Вообще, весь фотосинтез — это использование энергии света для восстановления углекислого газа и производства из него органических молекул, используя электроны, отбираемые для него у каких-то других внешних молекул.
 
В кислородном фотосинтезе этой внешней молекулой является вода, которая окисляется до молекулярного кислорода. В основных вариантах бескислородного фотосинтеза источником электронов являются ионы железа Fe2+, окисляемые до Fe3+, и соединения серы, такие, как сульфиды или сама молекулярная сера. Сульфиды окисляются до серы, сера окисляется до сульфатов. Есть варианты бескислородного фотосинтеза, использующие молекулярный водород, есть варианты с использованием некоторых органических соединений, таких, как янтарная или щавелевая кислоты.
 
Понятно, что вода доступна в гораздо большем количестве, чем вышеперечисленное. И по геологическим данным, на протяжении архея моря были заселены в основном микробами, осуществляющими железный фотосинтез. Существует много отложений — полосатые железистые кварциты, они же джеспилиты, они же banded iron formations — это, судя по всему, следы деятельности железных фотосинтетиков, окислявших двухвалентное железо, растворенное в морской воде в ту эпоху, и осаждавших его в виде магнетита и гематита. Причем осаждавших днем и не осаждавших ночью — поэтому отложения полосатые, состоящие из субмиллиметровых полосочек.
 
Но поступление железа в морскую воду связано с геологической активностью планеты — с вулканами, с выветриванием базальтов на суше, с деятельностью черных курильщиков и т. д. А геологическая активность со временем затухает. Продуктивность биосферы же, с другой стороны, росла по мере того, как микробы осваивали новые места обитания и распространялись в том числе по морю. То есть выпадение железа из моря со временем усиливалось, а поступление железа в море со временем слабело. Рано или поздно два этих процесса приходят к такому результату, что железо в море кончается, и микробы, использующие железный фотосинтез, больше не могут этим заниматься — они влетают в ресурсный кризис.
 
Кислородный фотосинтез позволяет использовать неисчерпаемый в масштабах Земли ресурс. Но он требует гораздо более сложных ферментативных систем, он гораздо более опасный. Если кислородным фотосинтезом неаккуратно управлять, то продуктом становится не только кислород, но и такие ядовитые вещества, как перекись водорода и совсем ядовитые гидроксильные радикалы, которые легко могут убить клетку, занимающуюся кислородным фотосинтезом.
 
И если посмотреть на то, как устроен кислородный фотосинтез в клетках, например, цианобактерий — он обвязан множеством защитных систем, которые по логике работы напоминают защитные системы на атомных электростанциях: в любой непонятной ситуации глушите реактор. То есть в цианобактериях есть система аварийного сброса мембранного потенциала, если есть проблемы с тем, куда мембранный потенциал дальше тратить. Есть специальные белки хлорофилл-содержащие, которые активируются при повышении яркости света и которые рассеивают энергию поглощенного света в тепло, не пуская ее на окисление воды. Есть множество белков, которые связывают хлорофилл, выпадающий из поврежденных фотосистем, не позволяя ему проводить какие-то опасные фотохимические реакции. Есть много протеинкиназ, которые совершают тонкую регуляцию фотосистем, подстраивая их свойства к интенсивности света потому, что фотосистемы должны эффективно использовать тусклый свет на рассвете или на закате и в то же время безопасно для клетки работать днем в ясную погоду, когда интенсивность света возрастает в тысячи раз.
 
У цианобактерий всё это есть. У микробов, занимающихся бескислородным фотосинтезом, железным и серным, этого почти нет. Кислородный фотосинтез гораздо опасней и гораздо сложней. И ключевой ко-фактор кислородного фотосинтеза — это марганцевый кластер — наночастица оксида марганца, содержащая четыре иона марганца, соединенных с молекулой фотосистемы II, именно ионы марганца являются катализаторами окисления воды. Если посмотреть на процесс сборки этого марганец-кислородного кластера, то очень похоже, что он возник как отход другого типа фотосинтеза, марганец-окисляющего.
 
В архейской морской воде помимо ионов двухвалентного железа было также заметное количество двухвалентного марганца. Марганец — более слабый восстановитель, чем железо, поэтому пока железа было много, можно было жить за его счет, и марганцевым фотосинтезом никто заниматься не пытался. Когда железо кончилось, следующий доступный ресурс — это марганец. Ионы Mn2+, окисляющиеся фотосистемами до четырехвалентного оксида MnO2, тоже могут поддерживать фотосинтез.
 
И дальше оказалось, что если этот оксид марганца прилипает к фотосистеме, то он из отхода становится средством производства, средством нового типа фотосинтеза, водоокисляющего. И вот тут у меня есть два интересных соображения.
 
Во-первых, если посмотреть на родословное дерево цианобактерий, единственных микробов, способных к кислородному фотосинтезу, то все нижние ветви на этом дереве — пресноводные. Освоение цианобактериями морей происходило сильно позже появления кислородного фотосинтеза и несколькими ветвями независимо. Кислородный фотосинтез распространился в морях на границе архея и протерозоя, примерно 2,5 млрд лет назад, но в пресных водах цианобактерии освоили его гораздо раньше. Глобального эффекта на планете это не имело, потому что озера и реки гораздо меньше, чем мировой океан, но процесс уже был.
 
Во-вторых, в пресных водах с дефицитом железа и соединений серы они могли столкнуться гораздо раньше, чем в море, — из-за малого объема водоемов.
 
И третье. Как же цианобактерии преодолели проблему опасности кислородного фотосинтеза? С химической точки зрения невозможно безопасно перейти от бескислородного фотосинтеза к кислородному, и вот почему: для окисления железа от каждого атома железа достаточно отрывать по одному электрону. Фотосистема проводит через себя по одному электрону на каждый поглощенный квант света. Если мы отрываем один электрон от молекулы воды, то получаем протон и гидроксильный радикал — крайне опасное соединение. Если мы от двух молекул воды отрываем два электрона одновременно, то получаем перекись водорода — тоже не сахар. Чтобы окислять воду безопасно, надо отрывать от нее сразу четыре электрона, а фотосистема умеет пропускать их только по одному.
 
И марганцевый кластер работает как раз промежуточным конденсатором: сначала фотосистема отделяет от него по одному четыре электрона, и дальше он в одну стадию возвращает четыре электрона от двух молекул воды, окисляя их до кислорода. Любые поломки марганец-кислородного кластера, которые можно сделать в эксперименте с выделенными фотосистемами или внося мутации в гены фотосистем, приводят к тому, что кислородный фотосинтез становится опасным прежде всего для самой клетки.
 
Как эволюция могла поддержать такое? Безопасного маршрута от бескислородного фотосинтеза к кислородному нет. Но мне кажется, что безопасный маршрут и не требуется, если первая функция кислородного фотосинтеза была не такой, как сейчас. Я уже упоминал некоторые параллели между кислородным фотосинтезом и атомной энергетикой. А вы помните, для чего строились самые первые атомные реакторы? Вовсе не для выработки электричества.
 
— Для наработки плутония.
 
— Да, для наработки оружейного плутония. И только когда на деньги военных, которые денег не считали и не очень заботились о безопасности, реакторная технология достаточно созрела, появились атомные электростанции. Мне кажется, что подобная история могла быть и с кислородным фотосинтезом. Что производство ядовитых активных форм кислорода было не проблемой, а целью первых версий кислородного фотосинтеза. Это было оружием одних клеток против других — травить активными формами кислорода каких-то соседей.
 
Химическая война между микробами в одном сообществе идет и сегодня. В ней используются как сложные пептидные антибиотики, так и простенькие молекулы типа оксида азота. И активные формы кислорода в древние эпохи вполне могли в этом участвовать. То есть какие-то предки цианобактерий жили в пресных водах, снабжались энергией с помощью бескислородного фотосинтеза, но при этом у них была какая-то предковая фотосистема II, содержащая не четыре атома марганца, а один или два, которая могла производить активные формы кислорода для подавления соседей других видов. То есть кислородный фотосинтез мог сначала возникнуть как оружие. И только после его совершенствования и совершенствования средств защиты от активных форм кислорода он мог стать основой энергетики клетки и процессом, преображающим планету.
 
— С этим кислородным фотосинтезом получается интересная, прямо-таки детективная история. Она выглядит довольно сложной, и странно, как эволюция умудрилась на это наткнуться. Правильно ли я понимаю, что жизнь все-таки должна была наткнуться на кислородный фотосинтез из-за его огромной выгоды? Особенно в связи с исчерпанием доступных железа и марганца.
 
— Смотрите. Возникновение кислородного фотосинтеза и его глобальное распространение — это два разных события, которые разделены по времени миллиардом или половиной миллиарда лет. Бактерии с кислородным фотосинтезом всю вторую половину архея были ограничены пресными водами. В отложениях позднего архея иногда находят следы кратковременного присутствия кислорода, которые у биологов получили название «кислородные дуновения» (oxygen whiffs), связанные как раз с континентальными пресноводными отложениями. То есть кто-то немного выделял кислород в озерах, но в морях они не были конкурентоспособными по сравнению с местными железоокисляющими фотосинтезирующими микробами. И только когда железо в море кончилось, спустившиеся из озер и рек цианобактерии смогли освоить моря, вытеснив железоокисляющих фотосинтетиков. Последние сейчас живут во всяких экзотических местах — в околовулканических озерах, где мало кислорода, но много железа из земной коры. А когда-то они занимали весь Мировой океан.

АrefievPV

Продолжение.
ЦитироватьЭукариоты: еще один прыжок через пропасть
 
Какое отношение всё это имеет к эукариотам? Мы немного забросили историю про стеролы, их важность для эукариотной клетки. Так вот, биосинтез стеролов происходит при участии молекулярного кислорода. Его надо не так много, как для кислородного дыхания, но немного надо. Тех малых количеств кислорода, которые есть, например, в кишечниках животных, хватает кишечным паразитам для синтеза стерола, но не для дыхания. Но в бескислородном мире стерол синтезировать невозможно. У всех эукариот стерол исходно есть. Значит, они возникли, когда кислород уже был. В бескислородном мире они, видимо, не могли бы возникнуть.
 
И с происхождением эукариот связана огромная загадка: эукариотная клетка, будучи гораздо сложнее прокариотной, при этом имеет гораздо более крупный, замусоренный и неупорядоченный геном, очень сложно, дорого и медленно управляемый. То есть переход от прокариот к эукариотам очень трудно объяснить просто естественным отбором — в отличие от всех предыдущих событий, поскольку от возникновения первого репликатора до возникновения первой бактериальной клетки и до кислородного фотосинтеза всё было поддержано естественным отбором.
 
Белки выгоднее, чем рибозимы, как катализаторы, ДНК — более надежный носитель генетической информации, более плотные клеточные мембраны позволяют выйти из геотермальных водоемов в моря и озера, кислородный фотосинтез поддержан естественным отбором, когда кончилось железо. А в случае с эукариотной клеткой отличие от прокариотной настолько велико, что поддержать все шаги через эту пропасть по маленьким камешкам естественным отбором, похоже, нельзя. По крайней мере, ученые не могут придумать такого сценария.
 
Эукариотная клетка возникла путем симбиоза между археей и бактерией, альфа-протеобактерией, очень вероятно, что в этом симбиозе поучаствовали еще и гигантские вирусы, возможно, даже не один. То есть эукариотная клетка представляет собой, в сравнении с бактериями, огромную, сложную, неуклюжую, очень дорогую и неэффективную химеру.
 
Тем не менее эукариоты появились. Появились единственный раз. Многие другие эволюционные процессы мы можем наблюдать повторно, например многоклеточность в растительном мире возникала больше десятка раз, многоклеточность грибов возникала три раза, в эволюции животных тоже довольно много повторяющихся событий, скажем, акула, дельфин и ихтиозавр похожи друг на друга снаружи, хотя произошли от совершенно разных предков. А происхождение эукариот — это событие уникальное, насколько мы можем судить. Ничего подобного на Земле больше не происходило, а если и происходило, то следы этого стерты настолько начисто, что мы не видим даже малейших намеков.
 
Мне лично происхождение эукариот кажется самым маловероятным шагом в эволюции жизни на Земле. Мне кажется, что в Галактике могут быть тысячи и миллионы планет, населенных бактериями, и при этом наша Земля может быть единственной планетой эукариот. Я, конечно, готов спорить об этом на бутылку коньяка. К сожалению, пока мы не полетим к другим звездам, решить этот спор будет трудно. Но мне кажется так.
 
— Хорошо! Это очень важное заявление, в свете которого вся эукариотная жизнь — необыкновенная ценность.
 
— Да.
 
Животный мир. Цивилизация как репродуктивная система
 
— Но дальше, смотрите. Возникли эукариотные клетки. После этого прошло еще больше миллиарда лет, пока не возникли сложные организмы. То есть дальше ждали еще какие-то проблемы?
 
— Да.
 
— То есть эукариотам нужно было много времени, чтобы научиться объединяться в сложные организмы. Какие там еще проблемы по дороге?
 
— Вы, конечно, имеете в виду под сложными организмами животных? Не растения.
 
— Да, конечно.
 
Многоклеточность растений возникала несколько раз, а многоклеточность животных всего один раз. Насколько мы можем судить, многоклеточность животных возникла в позднем протерозое в эпоху криогения, в эпоху глобальных оледенений, когда Земля замерзала почти до экватора.
 
— Сколько это времени назад произошло?
 
— Примерно 700–750 млн лет назад, может быть 800.
 
— То есть это больше 200 млн лет до кембрия?
 
— Да, задолго до кембрия. Расхождение разных групп животных, таких, как губки и кишечнополостные, датированное с помощью молекулярных часов, началось как раз в криогении. То есть многоклеточность животных возникла тогда. И еще криогений — период очень быстрого роста содержания кислорода в атмосфере. Если на границе архея и протерозоя кислород в атмосфере возник вообще в уловимых количествах, а на протяжении большей части протерозоя его было довольно мало — несколько процентов от современного количества, — то в течение криогения его содержание стало расти очень быстро и к кембрию выросло до половины от современного.
 
Мне кажется, что тут, как и с появлением кислородного фотосинтеза, дело во многом в железе. Появлению кислородного фотосинтеза препятствовало то, что железо было доступно в морской воде. На границе архея и протерозоя запасы железа в морской воде были исчерпаны, но оставалось много железа и других окисляемых минералов на суше, и выделяемый фотосинтетиками кислород реагировал прежде всего с ними.
 
В протерозое начинается образование железных руд на суше (так называемые красноцветы). В протерозое начинается массовое окисление сульфидных минералов на суше, и получаемая при этом серная кислота течет в моря, где в огромных количествах появляются сульфаты, начиная с протерозоя. В архейской морской воде сульфатов практически не было. И этот восстановительный буфер — сульфиды разных металлов плюс двухвалентное железо в составе базальтов — очень долго сдерживал рост концентрации кислорода в атмосфере. Но в течение протерозоя кислородные фотосинтетики росли и развивались, появлялись более эффективные многоклеточные эукариотные водоросли, которые плохо поддавались разложению, происходило захоронение неокисленного органического углерода в морских осадках, что способствовало необратимому выделению кислорода в атмосферу.
 
Когда фотосинтетики переломили тенденцию расхода кислорода на окисление минералов на суше, и когда затухающая геологическая активность замедлила поступление базальтов и сульфидов на сушу, содержание кислорода в атмосфере начало быстро расти. Открылась возможность появления многоклеточных животных.
 
Как и с эукариотами, у животных тоже есть один общий для всех животных метаболический путь, использующий молекулярный кислород. И это не дыхание. Это окисление одной из аминокислот — пролина в гидроксипролин.
 
Это аминокислота, которой нет в генетическом коде, тем не менее в суммарном составе белков человека или мыши ее больше, чем таких классических аминокислот, как триптофан и метионин. Гидроксипролин нужен для синтеза коллагена — ключевого белка внеклеточного матрикса животных, к которому прикрепляются клетки. Это базальные мембраны, связки, сухожилия, кости, хрящи, рыхлая соединительная ткань, нижний слой кожи и т. д. То есть коллагены в организме животных встречаются везде. И структура коллагенов с его прочными длинными волокнами (вы знаете, что сухожилия настолько прочны, что в древнем мире их использовали как тетиву луков?) требует гидроксипролина, который в свою очередь требует молекулярного кислорода и аскорбиновой кислоты. Поэтому при недостатке аскорбиновой кислоты этот процесс нарушается — болезнь называется «цинга», при ней в первую очередь выпадают зубы и страдают все остальные коллагеносодержащие ткани.
 
— Возникает впечатление, что путь эволюции до животных, не говоря о разуме, извилист и тернист. Удивительно, что хватило четырех миллиардов лет. Это невероятное везение?
 
— Есть известное уравнение Дрейка, которое описывает вероятность возникновения разумной жизни в Галактике. Мне оно не нравится тем, что там есть вероятности, но нет времени протекания процессов. А от чего зависит время? В случае Земли очень похоже, что темпы эволюции зависят от доступности железа и скорости его утилизации фотосинтезирующими организмами. Если бы мы жили на суперземле, богатой железом и с медленнее затухающей геологической активностью, то и эволюция от первой клетки до животных, возможно, заняла бы не четыре миллиарда лет, а все десять или двадцать.
 
Вполне возможно, что на суперземлях жизнь может когда-нибудь возникнуть. Мы просто успели раньше. С другой стороны, если бы Солнце было тусклее, фотосинтез шел бы медленнее. Смотрим на системы красных карликов. Даже при том содержании железа и затухании геологической активности, которые есть на Земле, у красного карлика все эти процессы были бы замедлены в несколько раз из-за меньшей доступности энергии для фотосинтеза. Бескислородные фотосинтетики десяток миллиардов лет занимались бы осаждением железа, потом еще десяток миллиардов лет прошел бы до возникновения животных.
 
— Но там у красных карликов другие проблемы. Зато они живут долго. Там есть все эти десятки миллиардов лет.
 
— Но Вселенной меньше 15 млрд лет. Жизнь в системах красных карликов может быть когда-нибудь возникнет, но мы до этого не доживем.
 
— В целом впечатление таково, что земная жизнь — нечто совершенно уникальное, и дело не только в нескольких пропастях, которые пришлось преодолеть, но и в недостатке времени. На Земле эволюция свершилась очень быстро и вовремя. Надо иметь в виду, что запас времени невелик: если бы на Земле не появилась разумная жизнь, то, скорее всего, через миллиард лет условия для эволюции на Земле исчезли бы. Солнце потихоньку разогревается, и где-то через миллиард лет Земля превратится в Венеру. Михаил, вам есть что еще добавить напоследок?
 
— Да, у меня есть, что добавить. Вы наверняка слышали про гипотезу Геи (Gaia) Джеймса Лавлока: Земля как обитаемая планета обладает многими свойствами живого организма, прежде всего поддержанием гомеостаза. Но на это можно довольно легко возразить, что Гея не размножается, а живые организмы размножаются. Но если подумать: как выглядело бы размножение Геи, если бы она вдруг стала это делать? Куда ей размножаться — здесь она уже заняла всё доступное пространство, все пригодные для живых организмов места Земли как небесного тела. Для размножения ей нужен доступ к другим небесным телам. Если мы не берем перенос отдельных микробов метеоритами, то перенос на другие планеты тысяч видов, включая животных и растения, возможен только на космическом корабле, построенном технологической цивилизацией. То есть Гея не размножается только потому, что она еще маленькая, она еще не достигла зрелости. А мы, человечество, — это репродуктивная система Геи. Только мы можем помочь ей размножиться и создать свои копии.
 
— Ну так я целую книжку об этом написал!
 
— Да!
 
— Спасибо за очень информативное интервью, я думаю, не последнее.
P.S. И эти высказывания согласуются с моей гипотезой:
Цитировать— Видимо, это самое начало эволюции, которое заняло какой-то неразрешимо короткий отрезок времени.
 
— Да, это прошло в пределах первых миллионов лет.
Как только сложились подходящие условия для возникновения жизни (именно в протоплазменной форме), так она и возникла. Это произошло быстро – в пределах от нескольких миллионов лет до десятков миллионов лет.

Питер

Алексей  прав  -  сожрут.   РНК   вообще  не  очень стабильны  в  сегодняшнем  мире  -    рибонуклеаз  море. Чисто    по   жизни возьмите  кровь  из  вены.  Поставьте в  холодильник  -  самый   обычный   бытовой.   И  оставьте  на  месяц.  Выделите    РНК  и  ДНК.  ДНК   -  будет,  вполне  приличного  качества.  РНК     хоть  сколь  нибудь  пригодную  для  работы  не   выделите.

Если  кто  не  читал  -  очень  рекомендую  Ковчег  Либра 47 Бориса  Штерна.
https://royallib.com/book/shtern_boris/kovcheg_47_libra.html
А  оно  вам  надо  ?

АrefievPV

В копилку:

Цитата: АrefievPV от июля 16, 2022, 09:03:36Вулканическая молния
https://elementy.ru/kartinka_dnya/1586/Vulkanicheskaya_molniya
Цитировать.....
Молнии вносят значительный вклад в изменения атмосферы, и, соответственно, на биологическую активность. Химические анализы показывают, что после воздействия молнии часть оксидных соединений восстанавливается. Хорошо известно, что молния — основной абиотический фактор, влияющий на азотфиксацию. Молекула атмосферного азота (N2) очень стабильна, но у молнии достаточно энергии, чтобы разорвать эту связь, позволив атомам азота прореагировать с кислородом, образуя оксиды (NO и NO2). В год молнии могут приводить к образованию до 8,6 миллионов тонн оксидов азота.

Обильная вулканическая активность в течение архея и связанное с ней появление вулканических молний могли сыграть, наряду с грозовыми молниями, важную роль в фиксации азота. Напомним, что азотфиксация — это основной источник биодоступного азота, который необходим для биосинтеза всех азотсодержащих органических соединений: аминокислот, белков, нуклеиновых кислот. Кроме того, они могут образовывать восстановленный фосфор (см. Накоплению биодоступного фосфора на ранней Земле способствовали удары молний, «Элементы», 31.03.2021), основное питательное вещество для морских и наземных микроорганизмов. Его находка в природных фульгуритах (см. статью Фульгуриты: «автографы молний» в песчаных дюнах Якутии) свидетельствует о способности обычных и грязных гроз вносить существенный вклад в биологический круговорот фосфора.

P.S. Ссылка в дополнение:

Накоплению биодоступного фосфора на ранней Земле способствовали удары молний
https://elementy.ru/novosti_nauki/433794/Nakopleniyu_biodostupnogo_fosfora_na_ranney_Zemle_sposobstvovali_udary_molniy

АrefievPV


АrefievPV

Хотел сначала в другую тему (в «Психику и мозг»), но слишком много получилось про возникновение и развитие жизни. Потом можно будет (при необходимости) ссылаться на это сообщение.
 
Когда-то я описывал последовательность реагирования сложной системы (в данном случае, живой системы), чуток повторю.
 
Напомню «цепочку»: нарушение гомеостаза – сигнал о нарушении – запуск каскада реакций по восстановлению гомеостаза – стремление к восстановлению гомеостаза – ... – стремление, осознанное на высшем эмоционально-чувствительном уровне сознания (то есть, желание/хотение) – стремление/желание/хотение, осознанное на высшем рационально-логическом уровне (то есть, мотивация/целеполагание). Это достаточно полное описание начала и конца «цепочки» (все промежуточные этапы из описания исключены).
 
Разумеется, для простых одноклеточных организмов вся «цепочка» ограничивается/заканчивается на запуске каскада реакций по восстановлению гомеостаза (максимум – на стремлении к восстановлению гомеостаза).
 
Здесь следует обратить внимание на второе «звено» в «цепочке» – на сигнал о нарушении гомеостаза. У людей может возникнуть вопрос, а куда направлен сигнал о нарушении гомеостаза у той же бактерии? Разве у бактерии есть некий центр принятия решений? И зачем этот сигнал, если каскад реакций по восстановлению гомеостаза запустится всё равно автоматически (ведь без такого, прямо-таки, безусловного автоматизма живая система не смогла бы поддерживать/сохранять свой гомеостаз)?
 
На самом деле, сигнал о нарушении является неизбежным следствием самого нарушения, и он, по большому счёту, никуда конкретно не направлен – просто идёт во все стороны, куда может идти (кстати, восстановление гомеостаза также может сопровождаться сигналом). Мало того, сам сигнал также является и фактором, запускающим каскад восстановительных реакций.
 
Другое дело, что заре формирования живых систем (именно нашего типа – атомно-молекулярных форм жизни, преимущественно на основе соединений углерода и воды), сигнал являлся побочным продуктом нарушения (и восстановления) гомеостаза и особо не использовался.    
 
Но, по мере усложнения живых систем (подчёркиваю – даже не прогрессивного усложнения, а «тупого» усложнения) таковые сигналы отражались в структуре живых систем, оставляли изменения в структуре живых систем (следы своего воздействия, так сказать). Причём, все эти процессы были естественными и неизбежными.
 
Но естественный отбор (ЕО) при этом работал «не покладая рук» – всё, что оказывалось вредным и/или бесполезным ЕО отсеивалось (вредные очень быстро, бесполезные постепенно).
 
Замечание в сторону.
 
Я уже писал, как формируется прогрессивное усложнение систем, повторю немного.
 
Естественным (и наиболее вероятным) является именно «тупое» (всякое там слипание, соединение, включение в себя всякого «хлама» и пр.) усложнение системы, не несущее какого-то преимущества, функциональности и т.д. Изменилась среда обитания, и появились возможности для наращивания «тупой» сложности – то есть, стали более вероятны такие процессы.
 
Возникновение функционального усложнения является очень маловероятным событием и чем сложнее исходная система, тем менее вероятно такое событие. Кстати, этим фактом очень часто пользуются критики и противники теории естественного возникновения жизни.
 
Функциональное усложнение систем возникает в результате ЕО, путём изменения и оптимизации структуры («тупой» сложности) систем. То есть, изменилась среда обитания в очередной раз, и сложные (с наращенной «тупой» сложностью) системы начали упрощаться, параллельно адаптируясь (типа, стали более вероятны такие процессы).
 
Мало того, возникновение новой функциональности без упрощения (исключения части элементов) также очень маловероятно. Даже паразиты, обретая новую функциональность, неизбежно упрощаются.
 
Для изменения внутренних связей надо, или что-то включить в систему, или что-то исключить из системы. Включение приведёт к наращиванию «тупой» сложности – вероятность обретения новой функциональности очень мала (система скорее сломается). Исключение приведёт к упрощению системы – по сути, к деградации системы. А вот если сначала нарастить «тупую» сложность, а потом начать терять элементы в силу естественных причин (тем самым поневоле изменяя внутренние связи), то можно с достаточной вероятностью обрести новую функциональность и сохранить сложность не ниже исходной (до наращивания «тупой» сложности).
 
Тут важно отметить сразу два принципиальных момента:
 
Функциональность возникает, как адаптация к условиям существования (как ответ системы на комплексные воздействия среды обитания на протяжении многих поколений). То есть, сама функция/функциональность требует взаимодействия системы и среды – она и рождается/возникает в процессе такового взаимодействия (функция, это, как бы, алгоритм этого взаимодействия).
 
– В процессе адаптации, практически неизбежно, «выпадают» элементы, звенья, части адаптирующейся системы (опять-таки, на протяжении многих поколений это происходит). Упрощение гораздо более вероятно, нежели некое конструктивное усложнение (упрощение, это процесс вполне естественный). Само собой, при «выпадении» элементов, в системе изменяются и её внутренние связи (типа, возникают новые связи без посредников). Однако таковое упрощение идёт на фоне формирования функциональности (на фоне адаптации) – то есть, происходит то, что можно назвать оптимизацией.
 
И если после обретения какой-то функциональности с параллельным упрощением структуры системы (то есть, оптимизацией структуры) возникает новая прогрессивная сложность, то никаким прямым (то есть, постепенным наращиванием прогрессивной сложности системы в процессе эволюции) моделированием это не объяснить – формирование такой последовательности из маленьких эволюционных «шагов» прогрессивного усложнения очень маловероятна.
 
Мало кто допускает, что эволюция идёт всеми возможными путями сразу – в том числе, через множество циклов («тупое» усложнение – упрощение + формирование функциональности). И, имея перед глазами исходную простую систему и конечную конструктивно сложную систему (после адаптации – то бишь, после обретения некоей функциональности), просто невозможно себе представить, как такое (весьма маловероятная последовательность событий) произошло.
 
Ошибка исследователей заключается в том, что, реконструируя последовательность событий, они применяют метод прямого моделирования – постепенное наращивание прогрессивной сложности системы в процессе эволюции маленькими «шагами». Но эволюционный путь оказался скорее похожим на последовательность «петель», а не линию – то есть, каждый маленький «шаг» является эволюционной «петлёй».  
 
Кстати, эти принципиальные моменты являются дополнительными аргументами к моему утверждению, что среда не только порождает систему, но и после рождения системы продолжает определять реакции системы (по сути, среда управляет системой).
 
Ещё одно замечание в сторону.
 
Вредное и бесполезное отсеивалось ЕО и, в таком случае, возникает вопрос, как могли появиться некие управляющие (контролирующие, решающие и т.д.) центры у простых живых систем (например, в предшественниках одноклеточных организмов)? Ответ – у самых простых живых систем и не было таких центров. Там было всё просто: нарушение – сигнал – восстановление. Ведь такие системы были достаточно хорошо оптимизированы, и для таких центров там просто не было места (да они и не нужны были).
 
Что примечательно, в протоколониях из протоклеток «зародыши» таковых центров вполне были, но не получили дальнейшего развития – более успешной оказалась сетевая структура протоколоний. Кстати, протоклеточная форма жизни перешла (эволюционировала) в клеточную из протоколоний в колонии (а не в виде разрозненных протоклеток в отдельные клетки). В то время протоклетки еще не могли самостоятельно существовать вне протоколонии длительное время (а реплицироваться вне протоколонии вообще не могли) – вся важная «машинерия» (в том числе, и гены) была распределена между протоклетками в протоколонии.
 
Когда возникли первые протоколонии с достаточным количеством протоклеток, сконцентрировавшим в себе (результат «тупого» усложнения) всю основную важную/критическую «машинерию», тогда и начался переход из протоклеточной формы жизни в полноценную клеточную форму жизни.
 
Протоклетки, сконцентрировавшие в себе (результат «тупого» усложнения) всю основную важную/критическую «машинерию», уже могли существовать вне протоколонии и даже реплицироваться вне протоколонии. По сути, это уже были полноценные клетки, но только сильно переусложнённые. Существование вне протоколонии таких протоклеток привело к оптимизации структуры протоклеток, результатом которой явилось возникновение полноценных клеточных организмов (предшественников бактерий и архей).
 
Понятно, что такие клетки также неизбежно формировали колонии, хотя уже могли вполне себе существовать и размножаться вне колоний. И результатом адаптации таких клеток (уже полноценных клеток, а не протоклеток с «дырявой» мембраной) к существованию внутри колоний привело к появлению бактерий и архей.
 
Характерно то, что внутренняя структура древних одноклеточных организмов отражала сетевую структуру протоколонии – всё распределено, нет какого-то выделенного центра.
 
На каком-то этапе эволюции началось очередное наращивание «тупой» сложности с последующей оптимизацией и параллельным формирование новой функциональности. Многократное повторение циклов («петель») привело в итоге к появлению эукариотических одноклеточных организмов. Вот у этих организмов уже есть центр, но может ли в этом центре формироваться некий аналог стремления к восстановлению гомеостаза, сказать трудно.
 
У многоклеточных организмов, если они имеют подобный центр, стремление к восстановлению гомеостаза уже присутствует.
 
Продолжу.
 
Так как, запуск каскада реакций восстановления гомеостаза вообще не требует наличия какого-то там центра по формированию стремления к восстановлению гомеостаза (достаточно активирующего сигнала при нарушении гомеостаза), то зачем такой центр тогда нужен и как такой центр возник?
 
Несложно понять, что вопрос, зачем, бессмысленный – он возник не в каких-то целях, а  по естественным причинам. Центр возник в результате «тупого» усложнения с последующей оптимизацией и обретением функционала. То есть, поначалу он и роль некоего центра не играл – просто некое сложное структурное скопление, не имеющее какой-то выраженной функциональности. Но в результате оптимизации некая функциональность, как адаптация, в этом скоплении оформилась. А то, что данная функциональность не несла особой пользы организму, дело десятое – лишь бы серьёзный вред не причиняла.
 
Однако в результате очередного изменения среды обитания, в некоторых ситуациях в отдельных экологических нишах для отдельных видов организмов, данный функционал оказался востребован. Из наиболее вероятных вариантов, в каких случаях мог понадобиться (типа, оказаться полезным) такой функционал, могу предположить вариант отложенного запуска каскада реакций восстановления.
 
Например, в силу неких причин (временный глюк), каскад восстановительных реакций не запустился, и повреждение осталось не устранённым. Тогда, для обычного оптимизированного организма без этого бесполезного центра, далее последует окончательное разрушение и смерть. Но у нашего организма в дело включается центр со своим стремлением к восстановлению нарушения гомеостаза (которое бесполезно «крутится» в этом центре и только сжирает ресурсы организма) и запускает снова каскад восстановительных реакций. Организм выжил, оставил потомков и стал эволюционировать в плане улучшения этой своей особенности для выживания и для продолжения рода.
 
Обратите внимание, что тут даже до врождённых автоматизмов (а тем более, до врождённых рефлексов) ещё очень далеко – у нас только-только появился прообраз примитивного центра реагирования на повреждение гомеостаза.
 
Вышеописанная схема помогает понять, что контуров реагирования у сложных организмов – множество, и каждый замыкается на своём уровне (и в некоторых ситуациях работает вполне автономно).
 
То есть, наши центры контроля поведения (поведения в целом) вовсе не отключают нижние контуры реагирования. Например, эмоционально-чувственные центры контроля целостного поведения способны в определённых ситуациях (а при некоторых нарушениях это постоянно происходит) перехватить (переключить на себя) сигнальный поток по управлению целостным поведением организма и «оставить с носом» рационально-логические центры контроля целостным поведением. Хотя и те, и другие относятся к высшим уровням, но лимбика более древнее эволюционное приобретение поэтому и «расположена» чуток «ниже» (рацуха уже поверх наросла, она более молодое эволюционное приобретение).

АrefievPV

В копилку. Просто оформил размышлизм немного по-другому (так-то я уже писал об этом).

Люди часто видят наличие причинно-следственной связи там, где её нет. И даже когда выясняется, что причина и следствие могут меняться местами, они всё равно не в силах отказаться от наличия таковой связи – просто начинается спор, что там было причиной, а что следствием. Мало кто способен додуматься, что и «причина», и «следствие» не связаны причинно-следственной связью (например, они сами могут оказаться тоже всего лишь следствиями чего-то более общего). 

Простейший пример такого случая – вопрос первичности «курица – яйцо». Обратите внимание, что само наличие причинно-следственной связи не подвергается сомнению, весь спор идёт только о том, что будет причиной, а что следствием. Все ответы вроде, «сначала было яйцо, но не птичье, а яйцо пресмыкающегося», просто отодвигают решение к всё более раннему этапу эволюции.

И если последовательно идти к началу эволюции живых организмов (типа, к точке зарождения жизни), то «упрёмся» уже в дилемму «бактерия – спора бактерии». А дальше пути назад во времени для большинства людей почему-то нет (они его не видят, они его не могут представить) – общепринятые представления мешают (постулируется, что единицей живого следует считать клетку).

А ведь решение этого спора достаточно очевидно – они оба (и «курица», и «яйцо») являются просто состояниями живой системы – активной фазы существования и пассивной фазы существования. Ещё раз: они являются просто высокоспециализированными состояниями, оформившимися в результате длительной эволюции (типа, обособившихся в результате прохождения кучи «фильтров» ЕО).

То есть, они являются следствиями (качественно обособившимися друг от друга в результате эволюции) самого факта возникновения живой системы. Можно сказать, что сначала возникла сама живая система, а потом у неё возникли/появились/обособились эти два состояния.

Мало того, возможно, что таковые состояния обособились друг от друга ещё на этапе протоплазменной формы жизни или «бутербродной» формы жизни – то есть, задолго до появления первых протоколоний из протоклеток.

АrefievPV

К сообщениям (из заблокированной темы):

https://paleoforum.ru/index.php/topic,9509.msg250332.html#msg250332
(здесь ссылка на видео лекции и мой навигатор по лекции)

https://paleoforum.ru/index.php/topic,9509.msg250335.html#msg250335
(здесь несколько цитат в качестве комментария к лекции)

Колыбель жизни: геотермальные системы?
https://elementy.ru/nauchno-populyarnaya_biblioteka/436506/Kolybel_zhizni_geotermalnye_sistemy
Интервью Бориса Штерна с Арменом Мулкиджаняном
«Троицкий вариант» №16(360), 23 августа 2022 года

Цитировать— Мы уже обсуждали, как возникла жизнь, как появился первый репликатор — грубо говоря, первая молекула, которая могла сама себя воспроизводить. Сегодня мы обсудим, где и в каких условиях мог возникнуть этот первый репликатор, где могла появиться первая клетка, где началась эволюция. С этим вопросом я и обращаюсь к Армену.

Принято считать, что первые репликаторы были похожи на современные молекулы РНК, эту идею, кстати, впервые высказал Андрей Николаевич Белозёрский в 1957 году. Есть набор убедительных свидетельств в пользу этой гипотезы. Где первые репликаторы могли возникнуть? Сейчас их синтезируют десятки ферментов, а тогда никаких ферментов не было. Первые репликаторы возникли сами по себе, спонтанно. Каким образом? Задача очень нетривиальная, потому что эти полимеры состоят из нуклеотидов как структурных единиц, мономеров, которые тоже достаточно сложно устроены. Если просто их перемешать, ничего не произойдет. Это как бы общие соображения.

А более специфическое соображение состоит в том, что все биологические полимеры — и молекулы РНК, которые претендуют на звание первых репликаторов, и молекулы ДНК, в которых сейчас хранится генетическая информация, и белки, и олигосахариды, т. е. полимеры из сахаров, — образуются, по сути дела, в результате одной и той же химической реакции, которая называется «поликонденсация». Например, два мономера объединяются между собой или мономер присоединяется к уже имеющейся цепочке. В ходе этой реакции происходит высвобождение молекулы воды (рис. 1). Это вещь совершенно принципиальная. Если наши молекулы находятся в водном растворе, реакция присоединения не идет, потому что вода вступает в эту реакцию и толкает ее в другую сторону. Если воды много, все эти полимеры, наоборот, распадаются. РНК — быстрее, ДНК — медленнее, белки — тоже медленнее, но все эти полимеры в воде нестабильны. Внутри клеток образование и поддержание этих полимеров обеспечивается внешней энергией.

Зеленые растения осуществляют фотосинтез, животные поедают растения, хищники едят мясо этих животных и т. п. В общем, нужна энергия, которая обеспечивается специальными ферментами. Всего этого, естественно, не было в начале времен. Спонтанно эти мономеры могут объединяться, только если воды мало. Показано, что тогда при определенных условиях они образуют полимеры, не очень длинные, но, в принципе, образуют. Но когда воды совсем нет, тоже плохо, потому что этим молекулам нужно как-то взаимодействовать, двигаться относительно друг друга, и если совсем сухо, это невозможно, — тогда они неподвижны. Нужна какая-то жидкость.


Рис. 1. На каждой стадии сборки цепочки РНК выделяется по молекуле воды. По Cafferty, Hud, 2014

Первым это понял Джон Берналл, британский кристаллограф, выпустивший книжку про происхождение жизни в 1951 году1. Он полагал, что хорошее решение — это приливные зоны. Пришел прилив — есть вода, всё перемешалось. Ушел прилив — всё высохло, тогда молекулы, находящиеся рядом друг с другом, могут взаимодействовать. Это вполне разумно с точки зрения физической химии.

Собственно, в рамках этой логики флуктуирующих условий серьезные ученые с тех пор и размышляют о происхождении жизни. Классическая теория — морские приливы или пресноводные лужи, которые то высыхают, то их снова дождик заливает. Это один вариант. Другой вариант, очень интересный, на мой взгляд, и многообещающий, — это так называемые эвтектические2 системы, по-простому — переходные системы при низких температурах, когда есть вода и лед одновременно. Их изучают применительно к образованию РНК-полимеров, и группа Филиппа Холлингера в Кембридже3 достаточно давно и успешно работает в этом направлении. Полимеры у них образуются при –7 °С в солевых растворах. Понижают температуру — вода вымерзает, образуется лед, молекулы РНК взаимодействуют между собой. Повышают температуру — всё перемешивается. Дальше снова всё замораживается. Тоже вполне разумно.

С моей аспиранткой Дарьей Дибровой мы косвенно вложились в эту тему лет десять назад: выпустили статью4 совместно с профессором геологического факультета МГУ Андреем Юрьевичем Бычковым и специалистами по сравнительной геномике из США (группа Евгения Викторовича Кунина). Мы попытались понять, где возникли первые живые клетки. Сравнивая разные организмы, можно выйти на свойства самых первых клеточных организмов. Собственно, Евгений Викторович лет двадцать назад и предложил эту идеологию. А мы, изучая особенности имевшихся у этих организмов ферментов, попытались понять, где они жили. И пришли к выводу, что жили они в весьма специальных геотермальных системах.

Геотермальные системы бывают двух типов. С одной стороны — гейзеры, когда выбрасывается столб соленой воды периодически. С другой стороны — геотермальные поля, где выбрасывается не вода, а пар. Оказалось, что конденсат этого пара химически очень похож на среду внутри наших клеток. У нас там очень нетривиальная неорганическая химия: в десять раз больше ионов калия, чем натрия, чрезвычайно много ионов цинка (по сравнению с тем, сколько цинка в природе), очень много фосфата. Не похоже ни на пресную, ни на соленую воду. Оказалось, что это больше всего похоже на конденсат паровых выбросов геотермальных полей.

Такие геотермальные поля есть у нас на Камчатке, Андрей Юрьевич Бычков их как раз изучает. Собственно, мы и утверждали в статье, что первые клетки возникли где-то в тех краях... Да нет, конечно, я шучу. Журналисты тогда писали: «Жизнь возникла на Камчатке». Нет, конечно. Древняя Земля была очень горячая, она вся была покрыта этими геотермальными полями.

Может быть, самые первые репликаторы, самые первые молекулы, которые могли себя воспроизводить, тоже жили в этих условиях. Возможно, они там возникли и развились до клеток. А иначе надо предполагать, что они жили где-то еще, а потом перебрались на эти геотермальные поля. Там выбросы происходят периодически, за сутки среда много раз увлажнится и высохнет, увлажнится и высохнет... Хорошее место, где могли возникнуть первые репликаторы. Опять-таки, если посмотреть на фотографии с Камчатки, видно, что эти поля покрыты снегом, т. е. снизу горячо, а вокруг очень холодно. Есть полный набор температур, от очень высоких до температуры замерзания воды и ниже. Тогда, может быть, могла работать та самая эвтектика, которую изучает Холлингер. То есть наблюдается полный набор благоприятных для возникновения жизни условий, и он есть только на геотермальных полях.

Все подобные химические соображения исключают морскую воду. Происхождение жизни в морской воде — это, видимо, совершенно нереально. Наша статья сильно изменила представления по этому поводу, и всё больше и больше ученых, изучающих происхождение жизни, моделируют именно континентальные геотермальные системы.

— Получается, нам нужны два условия: чередование сухости и влажности плюс определенный химический состав внешней среды. Геотермальные источники — это единственный вариант? Или есть другие?

— Мы сейчас пишем статью про это на основе лекции, прочитанной три года назад в Москве5. Она есть в Интернете. Дело в том, что период в истории Земли, когда она вся была покрыта геотермальными полями, в каком-то смысле был неизбежен. Дело в том, что мы строим гипотезы по поводу условий происхождения жизни, прошу прощения за каламбур, не от хорошей жизни, а потому, что Земля существует 4,5 млрд лет, и жизнь на Земле, скорее всего, появилась довольно рано, чему есть косвенные свидетельства, а древнейших земных пород не сохранилось. Самому древнему куску породы — 4 млрд лет. Первые 500 млн лет истории Земли геологически никак не засвидетельствованы. Это беда. А связано это с тем, что на Земле происходит тектоника плит, процесс «переваривания» земной коры: она плавится, потом ее снова выносит на поверхность... Поэтому от первых 500 млн лет геологам почти ничего не осталось. Правда, есть маленькие цирконовые гранулы, очень тугоплавкие. Это крохотные камушки, которые, не плавясь, проходили через циклы расплавления и кристаллизации окружающей их породы. Самым древним из них — 4,4 млрд лет. По ним можно что-то узнать.

А вот вне Земли ситуация странным образом другая. На Марсе, например, тектоники плит не было, и значительная часть породы на поверхности никуда не делась за те же 4,5 млрд лет. На Луне тоже не было тектоники плит, поэтому лунный грунт — смесь камней очень разного возраста, и этот грунт доступен, на Землю доставили уже 80 кг и достаточно хорошо изучили. То есть самой древней геологической земной летописи нет, а лунная — есть. И там очень много интересных обстоятельств выявляется.

Главный вывод — Луна образовалась из Земли. Изотопный состав по кислороду, по железу у Луны и Земли абсолютно один и тот же. Поэтому принято считать, что Луна образовалась в результате катастрофы: где-то через 50–100 млн лет после образования Земли какая-то планета размером с Марс в нее врезалась, огромное количество земной материи вылетело на орбиту, и часть этой материи собралась и образовала Луну. Можно прикинуть, сколько энергии надо, чтобы выбросить на орбиту с первой космической скоростью массу Луны. Понятно, что в этот момент значительная часть мантии Земли перешла в газообразное состояние. Оставшаяся мантия, естественно, была расплавлена, а дальше этот океан магмы, которого не могло не быть, остывал. После того, как образовалась новая земная протокора, Земля продолжала остывать благодаря вулканической активности. Чтобы сбрасывать тепло, вулканов должно было быть очень много, и вокруг каждого вулкана были свои геотермальные поля. В общем, это было общее топологическое пространство переходящих друг в друга геотермальных полей, покрывающих Землю. Собственно, ничего другого после лунообразующего события быть, вроде, и не могло. Сейчас таких геотермальных полей штук десять на всю Землю, это экзотика. А тогда всё было ими покрыто. И это не просто гипотеза.

Недавно опубликована модель остывания Земли по этому механизму6. Именно тогда, спустя 100–200 млн лет после возникновения Земли, могла запуститься жизнь. Так что это было интересное время с точки зрения физики Земли.

А еще там должна была быть нетривиальная химия, потому что биологические молекулы образованы из структурных единичек, кирпичиков, где есть углерод и азот, связанные друг с другом. Из них сложены колечки нуклеотидов, такая же углерод-азотная пептидная связь объединяет две аминокислоты в белке (рис. 2). Это интересно, потому что в неорганической природе нет минерала, в котором есть связь между углеродом и азотом. Одним из первых вопросом возникновения связей углерод-азот занимался Лев Михайлович Мухин из Института космических исследований Академии наук в 1970-е годы. Он поехал на Камчатку и обнаружил в вулканических извержениях цианид, состоящий как раз из связанных между собой атомов углерода и азота7. Эта связь, видимо, образуется в химическом реакторе, каковым служит вулкан, при температуре 1000–1200 °С. Мухин обнаружил достаточно большие концентрации цианида, который, видимо, липнет к лаве, поэтому ученый извлекал его прямо из лавовых образцов.


Рис. 2. Формамид — «свободноживущая пептидная связь». Пептидная цепочка — полимер из формамидных групп. umbc.edu, c изменениями

Много хороших химиков работают по этой теме. Дело в том, что, если вы берете цианид и начинаете проводить с ним химические реакции, из цианида получаются и нуклеотиды, и аминокислоты, и всё, что хотите, даже сахара странным образом получаются. Джон Сазерленд из Кембриджа, начиная с цианида и используя разные катализаторы, получил и нуклеотиды, и аминокислоты, и много чего еще8.

А параллельно в Италии работает группа под руководством двух профессоров, Энрико ди Мауро и Раффаэле Саладино. Они взяли другое вещество, формамид — это цианид, связавший молекулу воды. Тоже простенькая молекула. Чего они только за двадцать лет с ней не делали... В ходе одной из последних работ Энрико ездил в Дубну к профессору Евгению Красавину, там они облучали формамид протонным пучком, имитируя космическое излучение, и тоже получили нуклеозиды, аминокислоты, органические кислоты, сахара9.

Интересно, что формамид — это жидкость, причем она кипит при 200°С. Температура кипения воды 100 °С тоже достаточно высокая; она обусловлена тем, что молекулы воды образуют водородные связи друг с другом. В формамиде межмолекулярные связи крепче, поэтому температура кипения выше. Так возникла следующая идея: если есть источник формамида (вулканический или атмосферный, потому что облака формамида даже в Галактике плавают, это простое вещество) и происходит испарение за счет, например, высокой температуры, то вода улетит, а формамид останется. И тогда мы можем получать все необходимые биополимеры, потому что воды нет, а формамид — кирпичик, из которых эти биополимеры сложены, и он эти полимеры не гидролизует, он как раз их всячески стабилизирует, это показано.

Таким образом, есть и такой вариант: жизнь могла зародиться в жидком формамиде с какими-то примесями или, например, в растворе с 80% формамида и 20% воды. Причем такой раствор ведет себя как антифриз. Это совершенно серьезно. Я пытался понять, какова температура замерзания формамида, до каких температур он может быть эвтектическим раствором. Выяснилось, что чистый формамид замерзает почти как вода, при 2 °С, а вот смесь формамида и воды замерзает уже при –20 °С. А если добавить еще какой-нибудь этиленгликоль, получаются дикие температуры замерзания, в районе –50 °С. Об этом я как раз узнал, найдя американский патент 1950-х годов на автомобильный антифриз.

В реальной природе, естественно, была смесь самых разных соединений, так что могла существовать жидкая среда при температурах существенно ниже нуля. И это, на самом деле, хорошо, потому что еще одна проблема этих РНК-полимеров в том, что они быстро разрушаются при высокой температуре. А в холодной, безводной или маловодной жидкой среде реакция поликонденсации РНК-подобных мономеров могла быть сдвинута в сторону их образования, так что таким озеркам антифриза и не надо было даже высыхать периодически для возникновения жизни. Атмосфера Земли при ударе потерялась, и ее наработка за счет работы вулканов заняла миллионы лет. Так что атмосферное давление было низким, и вода испарялась безо всякого нагрева.

Кстати, один из парадоксов происхождения жизни — так называемый парадокс тусклого Солнца. Дело в том, что Солнце 4,5 млрд лет назад излучало на 30% меньше энергии, чем сейчас, а излучение было сдвинуто в синюю область, т. е. было меньше инфракрасного, теплового излучения. По разным оценкам, на Земле была температура от –50 до –30 °С. Это дополнительный аргумент в пользу геотермальных полей, обеспечивавших широкий диапазон температур.

— Насколько я понял, все эти условия требуют молодой геологически активной планеты. Поэтому вопрос: какие временные рамки возникновения жизни на Земле?

— Я уже старался показать, что полезную информацию можно извлечь из совершенно нетривиальных с точки зрения окружающей нас водной химии свойств биомолекул. Образующие их органические молекулы тоже необычны. Они потому и называются органическими, что химики открыли их в организмах, а в неорганической природе их нет или очень мало. Чем органические молекулы отличаются от неорганических? Органические молекулы содержат так называемый восстановленный углерод, т. е. атомы углерода в биомолекулах образуют связи с атомами водорода.

Как правило, органические, «восстановленные» молекулы окисляются, когда атомы водорода заменяются атомами кислорода — сильного окислителя, обладающего высоким сродством к электронам. При этом способность всей молекулы отдавать электроны на сторону, т. е. самой служить восстановителем, уменьшается. Поэтому благодаря атмосферному кислороду мы сейчас живем в окисленной среде.

В неорганической же природе углерод существует в виде углекислоты, СО2, предельно окисленной формы углерода. Поэтому жизнь устроена так, что, используя внешние источники энергии (например, свет при фотосинтезе), биосфера восстанавливает углекислоту до органических молекул. Для этого требуются протоны и так называемые восстановительные эквиваленты, а по-простому — электроны, необходимые для компенсации положительного заряда протонов. Есть десятки ферментов, которые за это отвечают, и эти ферменты очень сложные, поэтому, скорее всего, они не самые древние. Так что в начале времен органические молекулы должны были как-то образовываться сами по себе.

Тут надо сказать, что атмосферный кислород появился только после того, как некоторые фотосинтезирующие бактерии научились использовать солнечный свет для окисления воды до кислорода; биогенный кислород постепенно накапливался в атмосфере; примерно 2,5 млрд лет назад резко повысилась степень окисления минералов — произошла кислородная катастрофа. А в течение предшествовавших ей двух миллиардов лет окружающая среда Земли была более восстановительной.

Начиная с Опарина принято считать, что обладающие восстановительными свойствами древние атмосфера и океан могли способствовать образованию органических соединений из углекислоты.

Дело, однако, в том, что для восстановления углекислоты, например при фотосинтезе, используются восстановители настолько сильные, что они окисляются не только кислородом, но и водой. Сейчас от окисления их защищают ферменты, внутри которых они «спрятаны». А вот без белков такие восстановленные соединения могли сохраняться только если воды не было. Вода относительно органических молекул нашего организма — окислитель. Вода не только разрушает связь между мономерами наших полимеров, но и может окислить многие молекулы нашего тела; другое дело, что это очень медленно происходит.

По уже упоминавшимся цирконовым гранулам геологи установили, что земная мантия обладала сверхвосстановительными свойствами только в течение первых 100–150 млн после образования Луны. Потом мантия подокислилась, видимо, взаимодействуя с водой. Так что, скорее всего, «окно» для возникновения жизни — 100–150 млн лет после образования Луны. Временные рамки достаточно жесткие. По другим критериям Беннер и соавторы тоже дают оценку 4,35 млрд лет10. А с тех пор Земля всё окисляется и окисляется.

Сначала увеличилось количество воды, и организмам пришлось приспосабливаться к этой гадости; вода для них — жуткий яд.

Прошло два миллиарда лет — появился кислород, потому что предки цианобактерий научились использовать энергию солнечного света, чтобы разлагать воду, отбирать у нее электроны и производить кислород. В ответ на это жизнь стала дальше приспосабливаться, появились многоклеточные организмы. До этого в них не было нужды. В общем, на Земле всё время идет приспособление жизни к ухудшающимся условиям. Для этого нужно становиться сложнее. Тогда можно выживать.

— Обязательно ли для возникновения жизни такое катастрофическое событие, как образование Луны?

— Скажу по-простому: не знаю. Мы реконструируем геохимию древней Земли по геохимии Луны. Скорее всего, земная протокора исходно обладала бы сверхвосстановительными свойствами в любом случае, а потом вода, высвобождавшаяся при затвердевании мантии, выходила бы на поверхность и окислила бы земную кору. Всё равно было бы какое-то «окно», когда органические молекулы могли образовываться на поверхности Земли сами по себе.

Для меня лично вся эта история с геохимией Луны, в которую я нечаянно влез, хотя я и биолог, оказалась очень важной, потому что еще одно из странных свойств живых организмов — большое количество ионов цинка внутри клеток. Из переходных металлов цинка там больше всего.

Как я уже говорил, мы воссоздавали среду обитания первых клеток по свойствам реконструированного Куниным набора ферментов, которые были у общего предка всех клеточных организмов. Они есть у всех свободноживущих организмов — значит, они были у общего предка. (Может быть, были еще какие-то общие ферменты, которые кто-то потерял, об этом можно дискутировать.) Многие из этих всеобщих ферментов странным образом оказались зависимы от ионов цинка как помощников при ферментативных реакциях или структурных элементов. Например, ион цинка образует две связи и «сшивает» два участка белка. Другая странность в том, что эти древние ферменты за одним исключением не используют железа, хотя его в земной коре в тысячу раз больше, чем цинка. Исходя из подобных соображений, мы написали несколько лет назад, что в истории жизни был какой-то период, когда вокруг было очень много цинка11. Мы назвали это «цинковым миром» и предложили геологическую гипотезу, почему так могло произойти, но сами понимали, что она не очень убедительна. То есть биологическая летопись говорит о том, что когда-то было много цинка, а почему — неведомо.

И вот что замечательно: в лунных породах цинка в сто раз меньше, чем на Земле. Улететь, как водород, он не мог — цинк тяжелый. Магния на Луне примерно столько же, сколько на Земле, а он в три раза легче цинка. Специалистов по геохимии Луны очень интересовало, куда подевался лунный цинк и они вроде бы разобрались12.

Итак, когда внешняя планета, именуемая Тейей, ударила по Земле, вынесенная ударом на орбиту материя из-за высокой температуры в несколько тысяч градусов должна была перейти в газообразное состояние, образовав протолунное облако. Со временем этот очень горячий протолунный диск, в одной из моделей называемый синестией, должен был остывать и уменьшаться в размерах. По мере остывания материя должна была переходить сперва в жидко-каплевидное, а затем и в твердое состояние с образованием частиц минералов, агрегация которых и привела к образованию Луны. И тогда эта цинковая аномалия объясняется тем, что цинк — самый волатильный, т. е. самый летучий металл. Цинк конденсируется из газовой фазы при 600–800 °С, в зависимости от давления. То есть кремниевые, содержащие железо и магний минералы уже «спекались» в Протолуну, а цинк еще оставался в газообразном состоянии. В какой-то момент этот объект уменьшился настолько, что Луна осталась снаружи — но обедненная летучими элементами. А эти элементы в конце концов выпали на Землю, причем мы полагаем, как нам кажется, разумно, что наиболее летучие элементы, а это цинк и сера, выпадали последними. Поэтому самый верхний слой (десятки-сотни метров) земной протокоры, которая образовалась поверх океана магмы, был насыщен именно ими. Цинка было много, легко прикинуть, что его было не менее 1017 кг.

Выпавший из протолунного облака цинк был по большей части металлическим. Металлический цинк — это очень сильный донор электронов, способный восстанавливать и углекислоту, и азот. Недавно была напечатана работа в Science, в которой все четыре РНК-нуклеотида получилсь с использованием металлического цинка в качестве восстановителя и катализатора13. Поэтому рождение Луны для меня важно, в первую очередь, тем, что оно привело к покрытию Земли специфическим слоем, который был в буквальном смысле плодороден для образования первых репликаторов, первых клеток.


Рис. 4. Унифицированный синтез всех четырех нуклеотидов с металлическим цинком как восстановителем и катализатором. Becker S. et al., 2019

— Благоприятным для образования жизни был определенный геологический период в истории ранней планеты. Вопрос: он был достаточно продолжительным для того, чтобы эволюция успела пройти путь от первых репликаторов до первых клеток?

— Хороший вопрос... Наверное, да. Если жизнь заставляет, эволюция проходит быстро. Думаю, все помнят пример из школьного учебника по биологии: белые бабочки, живущие рядом с заводами, где сжигали уголь, очень быстро, за десятки лет, стали грязно-серыми, чтобы их птички не ели. Скорость эволюции определяется скоростью изменения внешней среды. А после катастрофы, приведшей к образованию Луны, условия на Земле менялись быстро.

В общем, важно понимать, что в естественном отборе нет никакого отбирающего персонала, просто неудачные организмы погибают и не оставляют потомства. И сотни миллионов лет для эволюции от РНК-подобных молекул до клеток, в общем, более чем достаточно.

— Большое спасибо за очень интересное интервью!